精英家教網 > 高中數學 > 題目詳情
(2012•黃州區(qū)模擬)已知某幾何體的三視圖如圖,則該幾何體的表面積為
3+
2
+
3
3+
2
+
3
分析:先由三視圖畫出幾何體的直觀圖,確定幾何體的線面關系和數量關系,再利用線面垂直的判定定理和性質證明幾何體四個面均為直角三角形,最后利用三棱錐的表面積公式計算即可.
解答:解:由三視圖可知,此幾何體為一個三棱錐,其直觀圖如圖
側棱PA⊥平面ABC,△ABC為直角三角形,∠C=90°,PA=AB=2,
∴AC=BC=
2
,
∵PA⊥平面ABC,∴BC⊥PA,又BC⊥AC,PA∩AC=A
∴BC⊥平面PAC,PC?平面PAC
∴BC⊥PC,
∴△PCB為直角三角形
∴其表面積S=S△PAC+S△PAB+S△PBC+S△ABC=
2
+2+
3
+1=3+
2
+
3

故答案為 3+
2
+
3
點評:本題考查多面體的表面積的求法,幾何體的三視圖與直觀圖的應用,考查空間想象能力,計算能力.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2012•黃州區(qū)模擬)已知向量
m
=(cos
x
2
,-1),
n
=(
3
sin
x
2
,cos2
x
2
),設函數f(x)=
m
n
+1.
(1)若x∈[0,
π
2
],f(x)=
11
10
,求cosx的值;
(2)在△ABC中,角A,B,C的對邊分別是a,b,c,且滿足2bcosA≤2c-
3
a,求f(x)的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•黃州區(qū)模擬)如圖,在直三棱柱ABC-A1B1C1中,AB=BC=2AA1,∠ABC=90°,D是BC的中點.
(Ⅰ)求證:A1B∥平面ADC1;
(Ⅱ)求二面角C1-AD-C的余弦值;
(Ⅲ)試問線段A1B1上是否存在點E,使AE與DC1成60°角?若存在,確定E點位置,若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•黃州區(qū)模擬)已知函數f(x)=
|log
x
4
-1|-2,|x|≤1
1
1+x
1
3
,|x|>1
,則f(f(27))=( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•黃州區(qū)模擬)如圖是二次函數f(x)=x2-bx+a的部分圖象,則函數g(x)=2lnx+f(x)在點(b,g(b))處切線的斜率的最小值是(  )

查看答案和解析>>

同步練習冊答案