已知雙曲線C1:-=1(a>0,b>0)與雙曲線C2:-=1有相同的漸近線,C1的右焦點(diǎn)為F(,0),a=    ,b=    .

 

【答案】

1 2

【解析】與雙曲線-=1有共同漸近線的雙曲線的方程可設(shè)為-=λ,-=1.

由題意知c=,4λ+16λ=5λ=,

a2=1,b2=4,a>0,b>0.

a=1,b=2.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知雙曲線C1
y2
m
-
x2
n
=1(m>0,n>0),圓C2:(x-2)2+y2=2,雙曲線C1的兩條漸近線與圓C2相切,且雙曲線C1的一個(gè)頂點(diǎn)A與圓心C2關(guān)于直線y=x對(duì)稱,設(shè)斜率為k的直線l過點(diǎn)C2
(1)求雙曲線C1的方程;
(2)當(dāng)k=1時(shí),在雙曲線C1的上支上求一點(diǎn)P,使其與直線l的距離為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•天津模擬)已知雙曲線C1
x2
a2
-
y2
b2
=1
(a>0,b>0)的左、右焦點(diǎn)分別為F1、F2,拋物線C2的頂點(diǎn)在原點(diǎn),它的準(zhǔn)線與雙曲線C1的左準(zhǔn)線重合,若雙曲線C1與拋物線C2的交點(diǎn)P滿足PF2⊥F1F2,則雙曲線C1的離心率為
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•廣西模擬)已知雙曲線C1
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦點(diǎn)分別為F1、F2,拋物線C2y2=2px(p>0)與雙曲線C1共焦點(diǎn),C1與C2在第一象限相交于點(diǎn)P,且|F1F2|=|PF1|,則雙曲線的離心率為
2+
3
2+
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C1的漸近線方程是y=±
3
3
x,且它的一條準(zhǔn)線與漸近線y=
3
3
x及x軸圍成的三角形的周長(zhǎng)是
3
2
(1+
3
)
.以C1的兩個(gè)頂點(diǎn)為焦點(diǎn),以C1的焦點(diǎn)為頂點(diǎn)的橢圓記為C2
(1)求C2的方程;
(2)已知斜率為
1
2
的直線l經(jīng)過定點(diǎn)P(m,0)(m>0)并與橢圓C2交于不同的兩點(diǎn)A、B,若對(duì)于橢圓C2上任意一點(diǎn)M,都存在θ∈[0,2π],使得
OM
=cosθ•
OA
+sinθ•
OB
成立.求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C1
x2
a2
-
y2
b2
=1(a>b>0)
的離心率為2.若拋物線C2x2=2py(p>0)的焦點(diǎn)到雙曲線C1的漸近線的距離為2,則拋物線C2的方程為
x2=16y
x2=16y

查看答案和解析>>

同步練習(xí)冊(cè)答案