【題目】如圖,在棱長(zhǎng)為a的正方體ABCD﹣A1B1C1D1中,P為A1D1的中點(diǎn),Q為A1B1上任意一點(diǎn),E,F(xiàn)為CD上任意兩點(diǎn),且EF的長(zhǎng)為定值,則下面的四個(gè)值中不為定值的是(
A.點(diǎn)Q到平面PEF的距離
B.直線(xiàn)PE與平面QEF所成的角
C.三棱錐P﹣QEF的體積
D.二面角P﹣EF﹣Q的大小

【答案】B
【解析】解:A中,取B1C1的中點(diǎn)M,∵QEF平面也就是平面PDCM,Q和平面PDCM都是固定的,∴Q到平面PEF為定值; B中,∵P是動(dòng)點(diǎn),EF也是動(dòng)點(diǎn),推不出定值的結(jié)論,∴就不是定值.∴直線(xiàn)PE與平面QEF所成的角不是定值;
C中,∵△QEF的面積是定值.(∵EF定長(zhǎng),Q到EF的距離就是Q到CD的距離也為定長(zhǎng),即底和高都是定值),
再根據(jù)A的結(jié)論P(yáng)到QEF平面的距離也是定值,∴三棱錐的高也是定值,于是體積固定.∴三棱錐P﹣QEF的體積是定值;
D中,∵A1B1∥CD,Q為A1B1上任意一點(diǎn),E、F為CD上任意兩點(diǎn),∴二面角P﹣EF﹣Q的大小為定值.
故選:B.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解空間角的異面直線(xiàn)所成的角(已知為兩異面直線(xiàn),A,C與B,D分別是上的任意兩點(diǎn),所成的角為,則).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校研究性學(xué)習(xí)小組從汽車(chē)市場(chǎng)上隨機(jī)抽取20輛純電動(dòng)汽車(chē)調(diào)查其續(xù)駛里程(單次充電后能行駛的最大里程),被調(diào)查汽車(chē)的續(xù)駛里程全部介于50公里和300公里之間,將統(tǒng)計(jì)結(jié)果分成5組:,繪制成如圖所示的頻率分布直方圖.

(1)求直方圖中的值及續(xù)駛里程在的車(chē)輛數(shù);

(2)若從續(xù)駛里程在的車(chē)輛中隨機(jī)抽取2輛車(chē),求其中恰有一輛車(chē)的續(xù)駛里程在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校的平面示意圖為如下圖五邊形區(qū)域ABCDE,其中三角形區(qū)域ABE為生活區(qū),四邊形區(qū)域BCDE為教學(xué)區(qū),AB,BC,CD,DE,EA,BE為學(xué)校的主要道路(不考慮寬度). ,
(1)求道路BE的長(zhǎng)度;
(2)求生活區(qū)△ABE面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在棱長(zhǎng)為的正方體中,點(diǎn)是棱的中點(diǎn),點(diǎn)在棱上,且滿(mǎn)足.

(1)求證:;

(2)在棱上確定一點(diǎn),使、四點(diǎn)共面,并求此時(shí)的長(zhǎng);

(3)求平面與平面所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ln(x+a)﹣x,a∈R.
(1)當(dāng)a=﹣1時(shí),求f(x)的單調(diào)區(qū)間;
(2)若x≥1時(shí),不等式efx+ x2>1恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 對(duì)任意n∈N+ , Sn=(﹣1)nan+ +n﹣3且(t﹣an+1)(t﹣an)<0恒成立,則實(shí)數(shù)t的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,C是以AB為直徑的圓O上異于A,B的點(diǎn),平面PAC⊥平面ABC,PA=PC=AC=2,BC=4,E,F(xiàn) 分別是PC,PB的中點(diǎn),記平面AEF與平面ABC的交線(xiàn)為直線(xiàn)l.
(Ⅰ)求證:直線(xiàn)l⊥平面PAC;
(Ⅱ)直線(xiàn)l上是否存在點(diǎn)Q,使直線(xiàn)PQ分別與平面AEF、直線(xiàn)EF所成的角互余?若存在,求出|AQ|的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】 已知函數(shù)f(x)=ax3+bx2的圖象經(jīng)過(guò)點(diǎn)M(1,4),曲線(xiàn)在點(diǎn)M處的切線(xiàn)恰好與直線(xiàn)x+9y﹣3=0垂直.

(1)求實(shí)數(shù)a、b的值

(2)若函數(shù)f(x)在區(qū)間[m,m+1]上單調(diào)遞增,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們常常稱(chēng)恒成立不等式,當(dāng)且僅當(dāng)時(shí)等號(hào)成立)為“靈魂不等式”,它在處理函數(shù)與導(dǎo)數(shù)問(wèn)題中常常發(fā)揮重要作用.

(1)試證明這個(gè)不等式;

(2)設(shè)函數(shù),且在定義域內(nèi)恒有,求實(shí)數(shù)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案