13.下列說法正確的是( 。
A.所有著名的作家可以形成一個集合
B.0與 {0}的意義相同
C.集合A={x|x=$\frac{1}{n}$,n∈N*} 是有限集
D.方程x2+2x+1=0的解集只有一個元素

分析 A、B、C運用集合的含義就可以判定,D利用一元二次方程根的判別式即可求解.

解答 對于A,集合中的元素具有確定性,著名專家特稱不確定,故A錯;
對于B,0是元素,相對{0}來說{0}是集合,故B錯;
對于C,集合A={x|x=$\frac{1}{n}$,n∈N*} 是無限集,故C錯;
對于D,方程x2+2x+1=0的解集只有一個-1,故D正確.
故選:D

點評 本題主要考查集合的含義及集合中元素的特性,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

3.已知命題p:對任意x∈(0,+∞),log4x<log8x,命題q:存在x∈R,使得tanx=1-3x,則下列命題為真命題的是(  )
A.p∧qB.(¬p)∧(¬q)C.p∧(¬q)D.(¬p)∧q

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.如圖在正方體ABCDA1B1C1D1中判斷下列位置關系:
(1)AD1所在直線與平面BCC1的位置關系是平行;
(2)平面A1BC1與平面ABCD的位置關系是相交.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知命題p:ex>1,命題q:log2x<0,則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知集合B={-1,0,1},若A⊆B,則滿足條件的A有8 個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.設f(x)=-x2-2x+1,g(x)=$\left\{\begin{array}{l}x+\frac{1}{x}(x>0)\\ 3-(\frac{1}{2})^x(x≤0)\end{array}$,若函數(shù)y=g(f(x))-a恰有四個不同的零點,則a的取值范圍是( 。
A.(2,+∞)B.($\frac{5}{2}$,+∞)C.(2,$\frac{5}{2}$)D.[2,$\frac{5}{2}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.設函數(shù)f(x)=x2-4|x|+5.
(1)用分段函數(shù)的形式表示該函數(shù)并畫出該函數(shù)的圖象;
(2)寫出該函數(shù)的值域以及函數(shù)的單調遞減區(qū)間(不用寫過程)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.與直線l:3x-5y+4=0關于原點對稱的直線的方程為( 。
A.3x+5y+4=0B.3x-5y-4=0C.5x-3y+4=0D.5x+3y+4=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.若函數(shù)y=$\left\{\begin{array}{l}{{x}^{2}-a,x≤0}\\{x-a+lnx,x>0}\end{array}\right.$,在區(qū)間(-2,2)上有兩個零點,則實數(shù)a 的范圍為[0,2+ln2).

查看答案和解析>>

同步練習冊答案