若函數(shù)f(x)=ax3+bx2+cx+d是奇函數(shù),且f(x)極小值=f(-
3
3
)=-
2
3
9

(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)在[-1,m](m>-1)上的最大值;
(3)設(shè)函數(shù)g(x)=
f(x)
x2
,若不等式g(x)•g(kx)≥k2-
1
k
(k>0)
恒成立,求實數(shù)k的取值范圍.
(1)∵函數(shù)f(x)=ax3+bx2+cx+d是奇函數(shù),
f(0)=0
f(-1)=-f(1)

解得,b=d=0,
∴f(x)=ax3+cx,f'(x)=3ax2+c,
f(x)極小值=f(-
3
3
)=-
2
3
9
,
f′(-
3
3
)=0

a-c=0
-
3
9
a-
3
3
c=-
2
3
9

解得,
a=-1
c=1

故f(x)=-x3+x
(2)∵f'(x)=-3x2+1=-3(x+
3
3
)(x-
3
3

∴f(x)在(-∞,-
3
3
),(
3
3
,+∞)上是減函數(shù),在[-
3
3
,
3
3
]上是增函數(shù)
由f(x)=0解得x=±1,x=0,
如圖所示,當(dāng)-1<m≤0時,
f(x)max=f(-1)=0;
當(dāng)0<m<
3
3
時,f(x)max=f(m)=-m3+m
當(dāng)m≥
3
3
時,f(x)max=f(
3
3
)
=
2
3
9

故f(x)max=
0,-1<m≤0
-m2+m,0<m<
3
3
2
3
9
,m≥
3
3

(3)∵g(x)=
1
x
-x
,
∴函數(shù)F(x)=g(x)•g(kx)
=(
1
x
-x
)(
1
kx
-kx

=
1
kx2
+kx2-k-
1
k
,
∵k>0,
1
kx2
+kx2≥2
,
F(x)min=2-k-
1
k

F(x)≥k2-
1
k
恒成立,
只須F(x)min=2-k-
1
k
k2-
1
k

∴-2≤k≤1,
又∵k>0
∴0<k≤1.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=x3-(2a+2)x2+bx+c,設(shè)曲線y=f(x)在與x軸交點處的切線為y=x-1,函數(shù)f(x)的導(dǎo)數(shù)y=f′(x)的圖象關(guān)于直線x=2對稱,求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=
x2+2x+a
x
,x∈[1,+∞).
(1)當(dāng)a=
1
2
時,判斷證明f(x)的單調(diào)性并求f(x)的最小值;
(2)若對任意x∈[1,+∞),f(x)>1恒成立,試求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

f(x)=
1
3
x3-4x+4
(1)求函數(shù)的極值
(2)求函數(shù)在區(qū)間(-3,4)上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知直線y=kx+1與曲線y=lnx有公共點,則實數(shù)k的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=ax3+bx2-2x在x=-2,x=1處取得極值.
①求函數(shù)f(x)的解析式;
②求函數(shù)f(x)在[-3,3]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某商品每件成本5元,售價14元,每星期賣出75件.如果降低價格,銷售量可以增加,且每星期多賣出的商品件數(shù)m與商品單價的降低值x(單位:元,0≤x<9)的平方成正比,已知商品單價降低1元時,一星期多賣出5件.
(1)將一星期的商品銷售利潤y表示成x的函數(shù);
(2)如何定價才能使一個星期的商品銷售利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某商品每件成本9元,售價為30元,每星期賣出432件.如果降低價格,銷售量可以增加,且每星期多賣出的商品件數(shù)與商品單價的降低值x(單位:元,0≤x≤21)的平方成正比.已知商品售價降低2元時,一星期多賣出24件.
(Ⅰ)將一個星期內(nèi)該商品的銷售利潤表示成x的函數(shù);
(Ⅱ)如何定價才能使一個星期該商品的銷售利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=eax-x,其中a≠0.
(1)若對一切x∈R,f(x)≥1恒成立,求a的取值集合.
(2)在函數(shù)f(x)的圖象上取定兩點A(x1,f(x1)),B(x2,f(x2)(x1<x2),記直線AB的斜率為K,問:是否存在x0∈(x1,x2),使f′(x0)>k成立?若存在,求x0的取值范圍;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案