f(x)=
x+2(x≤-1)
x2(-1<x<2)
3x(x≥2)
,若f(m)=3,求m的值.
若m≤-1,則f(m)=m+2=3,∴m=1,不符合要求舍去---------(4分)
若-1<m<2,則f(m)=m2=3,∴m=
3
(m=-
3
不符合要求舍 )--(8分)
若m≥2,則f(m)=3m=3,∴m=1,不符合要求舍去
綜上,∴m=
3
-----------(12分)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

探究函數(shù)f(x)=x+
4
x
,x∈(0,+∞)的最小值,并確定取得最小值時x的值.列表如下:
x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
y 8.5 5 4.17 4.05 4.005 4 4.005 4.002 4.04 4.3 5 4.8 7.57
請觀察表中y值隨x值變化的特點,完成以下的問題.
(1)函數(shù)f(x)=x+
4
x
(x>0)在區(qū)間
(0,2)
(0,2)
上遞減;并利用單調性定義證明.函數(shù)f(x)=x+
4
x
(x>0)在區(qū)間
(2,+∞)
(2,+∞)
上遞增.當x=
2
2
時,y最小=
4
4

(2)函數(shù)f(x)=x+
4
x
(x<0)時,有最值嗎?是最大值還是最小值?此時x為何值?(直接回答結果,不需證明)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

探究函數(shù)f(x)=x+
4
x
  x∈(0,+∞)的最小值,并確定相應的x的值,列表如下,請觀察表中y值隨x值變化的特點,完成下列問題:
x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
y 8.5 5 4.17 4.05 4.005 4 4.005 4.102 4.24 4.3 5 5.8 7.57
(1)若當x>0時,函數(shù)f(x)=x+
4
x
時,在區(qū)間(0,2)上遞減,則在
 
上遞增;
(2)當x=
 
時,f(x)=x+
4
x
,x>0的最小值為
 
;
(3)試用定義證明f(x)=x+
4
x
,x>0在區(qū)間上(0,2)遞減;
(4)函數(shù)f(x)=x+
4
x
,x<0有最值嗎?是最大值還是最小值?此時x為何值?
解題說明:(1)(2)兩題的結果直接填寫在答題卷中橫線上;(4)題直接回答,不需證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列各對函數(shù)表示同一函數(shù)的是( 。
(1)f(x)=x與g(x)=(
x
2                     
(2)f(x)=x-2與g(x)=
x2-4x+4

(3)f(x)=πx2(x≥0)與g(r)=πr2(r≥0)
(4)f(x)=|x|與g(x)=
x,x≥0
-x,x<0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=|x-2|+|x-a|(a∈R).
(1)當a=-1時,解不等式f(x)≥4.
(2)如果?x∈R,f(x)≥2,求a的取值范圍.

查看答案和解析>>

同步練習冊答案