函數(shù)y=2sin(
1
2
x+
π
4
)
的周期是
 
考點:三角函數(shù)的周期性及其求法
專題:三角函數(shù)的求值
分析:利用正弦函數(shù)的周期公式即可求得答案.
解答: 解:∵y=2sin(
1
2
x+
π
4
)
,
∴其周期T=
1
2
=4π,
故答案為:4π.
點評:本題考查三角函數(shù)的周期性及其求法,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知四棱錐P-ABCD的底面是正方形,側(cè)棱PC⊥底面ABCD,E是側(cè)棱PC上的動點,F(xiàn)是棱AB的中點.
(1)無論點E在任何位置時,是否都有BD⊥AE?并證明你的結(jié)論;
(2)當(dāng)E為棱PC中點時,求證:EF∥平面PAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有關(guān)下列命題,期中說法正確的是( 。
A、若P∧q是假命題,則p,q都是假命題
B、一元二次方程x2-4x+n=0(n∈N*
C、命題若x2-2x+3=0,則x=3的逆否命題為“若x≠3,則x2-2x-3≠0”
D、“x2-3x-4=0”是“x=4”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三角形ABC中AB=2,AC=3,D為BC的中點,則
AD
BC
=(  )
A、
5
2
B、-
5
2
C、5
D、-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1=1,對任意n∈N*,都有
a
 
n+1
=
a
 
n
2
a
 
n
+1
,
b
 
n
=
1
a
 
n

(Ⅰ)證明:數(shù)列{bn}為等差數(shù)列,并求出an;
(Ⅱ)設(shè)數(shù)列{an•an+1}的前n項和為Tn,求證:
T
 
n
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從1,2,3,4,5中任取兩個不同的數(shù)字,構(gòu)成一個兩位數(shù),則這個數(shù)字大于40的概率是(  )
A、
2
5
B、
4
5
C、
1
5
D、
3
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正方形ABCD的邊長為4,點E在CD上,且DE:EC=1:3,F(xiàn)為AD的中點,則
AE
 • 
BF
=( 。
A、-4B、8C、4D、12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

cosα+
3
sinα化簡的結(jié)果可以是( 。
A、cos(-α)
B、2cos(
π
3
-α)
C、
1
2
cos(
π
3
-α)
D、2cos(
π
6
-α)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的前n項和為Sn,若Sn=2an-1(n∈N*),則Tn=
1
a1a2
+
1
a2a3
+…+
1
anan+1
的結(jié)果可化為(  )
A、1-
1
4n
B、1-
1
2n
C、
2
3
(1-
1
4n
D、
2
3
(1-
1
2n

查看答案和解析>>

同步練習(xí)冊答案