(本小題滿分10分)選修4-1幾何證明選講
如圖,在中,,平分于點,點上,
(1)求證:是△的外接圓的切線;
(2)若,求的長.
(1)見解析;(2)EC=
本試題主要是考查了角平分線的性質,以及直線與圓的位置關系的運用。利用線線平行的判定定理得到平行的判定,并運用勾股定理得到結論。
解(1)取BD的中點O,連接OE.
∵BE平分∠ABC,∴∠CBE=∠OBE.又∵OB=OE,∴∠OBE=∠BEO,
∴∠CBE=∠BEO,∴BC∥OE.………………3分
∵∠C=90°,∴OE⊥AC,∴AC是△BDE的外接圓的切線.  5分
(2)設⊙O的半徑為r,則在△AOE中,
,即解得,      7分
∴OA=2OE,∴∠A=30°,∠AOE=60°.∴∠CBE=∠OBE=30°.
∴EC=.                 …………10分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在△ABC中,∠C=90°,BC=8,AB=10,O為BC上一點,以O為圓心,OB為半徑作半圓與BC邊、AB邊分別交于點D、E,連接DE。

(1)若BD=6,求線段DE的長;
(2)過點E作半圓O的切線,交AC于點F,
證明:AF=EF。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

選修4—1:幾何證明選講
如圖所示,已知PA是⊙O相切,A為切點,PBC為割線,弦CD//AP,AD、BC相交于 E點,F(xiàn)為CE上一點,且

(1)求證:A、P、D、F四點共圓;
(2)若AE·ED=24,DE=EB=4,求PA的長。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,已知△ABC內接于圓O,點D在OC 的延長線上,AD是⊙0的切線,若∠B=30°,AC=2,則OD的長為           

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖1,在平面直角坐標系中,邊長為1的正方形OABC的頂點B在軸的正半軸上,O為坐標原點.現(xiàn)將正方形OABC繞O點按順時針方向旋轉.
 (1)當點A第一次落到軸正半軸上時,求邊BC在旋轉過程中所掃過的面積;
。2)若線段AB與軸的交點為M(如圖2),線段BC與直線的交點為N.設的周長為,在正方形OABC旋轉的過程中值是否有改變?并說明你的結論;
(3)設旋轉角為,當為何值時,的面積最?求出這個最小值, 并求出此時△BMN的內切圓半徑.

      

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本大題10分)
如圖,為⊙的直徑,切⊙于點,交⊙于點,點上.求證:是⊙的切線.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若直線與曲線為參數(shù),且有兩個不同的交點,則實數(shù)的取值范圍是__________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

(選修4—1)如圖,PCB為圓O的割線,并且不過圓心O,已知∠BPA=30°,PA=2PC=1,則圓O的半徑為________    

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,⊙O是邊長為2的等邊△ABC的內切圓,則⊙O的半徑為         

查看答案和解析>>

同步練習冊答案