解關于x的不等式
1+x
1-x
≥0.
考點:其他不等式的解法
專題:不等式的解法及應用
分析:根據(jù)分式不等式的解法建立不等式組即可得到結(jié)論.
解答: 解:∵
1+x
1-x
≥0,
∴不等式等價為
(x+1)(1-x)≥0
1-x≠0

(x+1)(x-1)≤0
x≠1
,
∴-1≤x<1,
即不等式的解集為[-1,1).
點評:本題主要考查不等式的解法,利用分式不等式的解法是解決本題的關鍵,注意分母不能取等號.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若x,y∈R,且
1-x≤0
2y-x-3≤0
x-y≤0
,則z=x+2y的最小值等于(  )
A、2B、3C、5D、9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知遞增的等比數(shù)列{an}滿足:a2+a3+a4=28,a3+2是a2與a4的等差中項.
(1)求數(shù)列{an}的通項公式;
(2)假設bn=
an
(an+1)(an+1+1)
,其數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知以坐標原點O為圓心的圓的半徑為2,Q是圓上一點,∠xOQ=
4
,試求點Q坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求使函數(shù)y=
3
2
cos(
1
2
x-
π
6
)取得最大值、最小值的自變量x的集合,并分別寫出最大值、最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=a-
1
|x|
的定義域與值域均為[m,n](m<n),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知項數(shù)為2n的等差數(shù)列{an},公差為d,且滿足S2n=n(an+an+1)(n∈N*),求證:S2n-S2n-1=nd.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:x2-8x-20<0,命題q:(x-m)(x-1-m)≥0,若?p是q的充分不必要條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)滿足f(-x)=-f(x),且在(-∞,0)內(nèi)是增函數(shù),f(-2)=0,則xf(x)<0的解集是
 

查看答案和解析>>

同步練習冊答案