函數(shù)f(x)=ax2+b|x|+c(a≠0),其定義域R分成了四個(gè)單調(diào)區(qū)間,則實(shí)數(shù)a,b,c滿足( )
A.b2-4ac>0且a>0
B.
C.b2-4ac>0
D.
【答案】分析:f(x)=ax2+b|x|+c是由函數(shù)f(x)=ax2+bx+c變化得到,再將二次函數(shù)配方,找到其對(duì)稱軸,明確單調(diào)性,再研究對(duì)稱軸的位置即可求解.
解答:解:f(x)=ax2+b|x|+c是由函數(shù)f(x)=ax2+bx+c變化得到,
即函數(shù)f(x)=變化得到,以a>0為例如圖:

第一步保留y軸右側(cè)的圖象,再作關(guān)于y軸對(duì)稱的圖象.
因?yàn)槎x域被分成四個(gè)單調(diào)區(qū)間,
所以f(x)=的對(duì)稱軸在y軸的右側(cè),使y軸右側(cè)有兩個(gè)單調(diào)區(qū)間,對(duì)稱后有四個(gè)單調(diào)區(qū)間.
所以
故選B.
點(diǎn)評(píng):本題主要考查二次函數(shù)配方法研究其單調(diào)性,同時(shí)說(shuō)明單調(diào)性與對(duì)稱軸和開(kāi)口方向有關(guān).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=ax2+bx(a,b是常數(shù),且a≠0),f(2)=0,且方程f(x)=x有兩個(gè)相等的實(shí)數(shù)根.
(1)求f(x)的解析式;
(2)當(dāng)x∈[0,3]時(shí),求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ax2+bx+c(a≠0),曲線y=f(x)通過(guò)點(diǎn)(0,2a+3),且在x=1處的切線垂直于y軸.
(Ⅰ)用a分別表示b和c;
(Ⅱ)當(dāng)bc取得最大值時(shí),寫出y=f(x)的解析式;
(Ⅲ)在(Ⅱ)的條件下,g(x)滿足
43
f(x)-6
=(x-2)g(x)(x>2),求g(x)的最大值及相應(yīng)x值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax2+ln(x+1).
(Ⅰ)當(dāng)a=
1
4
時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)x∈[0,+∞)時(shí),不等式f(x)≤x恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅲ)求證:(1+
2
2×3
)×(1+
4
3×5
)×(1+
8
5×9
)…(1+
2n
(2n-1+1)(2n+1)
)<e
(其中,n∈N*,e是自然對(duì)數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)a,b,c(a≠0)滿足
a
m+2
+
b
m+1
+
c
m
=0(m>0)
,對(duì)于函數(shù)f(x)=ax2+bx+c,af(
m
m+1
)
與0的大小關(guān)系是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax2+bx+1(a,b為實(shí)數(shù)),x∈R,F(x)=
f(x)(x>0)
-f(x)(x<0)

(1)若f(-1)=0,且函數(shù)f(x)的值域?yàn)閇0,+∞),求F(x)的表達(dá)式;
(2)在(1)的條件下,當(dāng)x∈[-2,2]時(shí),g(x)=f(x)-kx是單調(diào)函數(shù),求實(shí)數(shù)k的取值范圍;
(3)設(shè)m•n<0,m+n>0,a>0且f(x)為偶函數(shù),判斷F(m)+F(n)能否大于零.

查看答案和解析>>

同步練習(xí)冊(cè)答案