如圖,已知正方形的邊長(zhǎng)為,點(diǎn)分別在邊上,,現(xiàn)將△沿線段折起到△位置,使得.
(1)求五棱錐的體積;
(2)求平面與平面的夾角.
(1);(2)
解析試題分析:(1)由于△沿線段折起到△的過程中,平面平面始終成立.所以平面.又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/83/e/jnjr5.png" style="vertical-align:middle;" />,正方形的邊長(zhǎng)為,點(diǎn)分別在邊上,.即可求得結(jié)論.
(2)依題已建立空間直角坐標(biāo)系.求出兩個(gè)平面的法向量,由法向量的夾角得到平面與平面的夾角.
試題解析:(1)連接,設(shè),由是正方形,,
得是的中點(diǎn),且,從而有,
所以平面,從而平面平面, 2分
過點(diǎn)作垂直且與相交于點(diǎn),
則平面 4分
因?yàn)檎叫?img src="http://thumb.zyjl.cn/pic5/tikupic/19/6/4ppns1.png" style="vertical-align:middle;" />的邊長(zhǎng)為,,
得到:,
所以,
所以
所以五棱錐的體積; 6分
(2)由(1)知道平面,且,即點(diǎn)是的交點(diǎn),
如圖以點(diǎn)為原點(diǎn),所在直線分別為軸,軸,軸建立空間直角坐標(biāo)系,則, 7分
設(shè)平面的法向量為,則
,
,
令,則, 9分
設(shè)平面的法向量
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在三棱錐中,底面,,且,
點(diǎn)是的中點(diǎn),且交于點(diǎn).
(1)求證:平面;
(2)當(dāng)時(shí),求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,四邊形ABCD是菱形,AC=6,BD=8,E是PB上任意一點(diǎn),△AEC面積的最小值是3.
(1)求證:AC⊥DE;
(2)求四棱錐P-ABCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在體積為的正三棱錐中,長(zhǎng)為,為棱的中點(diǎn),求
(1)異面直線與所成角的大。ńY(jié)果用反三角函數(shù)值表示);
(2)正三棱錐的表面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖1,,,過動(dòng)點(diǎn)A作,垂足D在線段BC上且異于點(diǎn)B,連接AB,沿將△折起,使(如圖2所示).
(1)當(dāng)的長(zhǎng)為多少時(shí),三棱錐的體積最大;
(2)當(dāng)三棱錐的體積最大時(shí),設(shè)點(diǎn),分別為棱,的中點(diǎn),試在棱上確定一點(diǎn),使得,并求與平面所成角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
圓錐PO如圖1所示,圖2是它的正(主)視圖.已知圓O的直徑為AB,C是圓周上異于A,B的一點(diǎn),D為AC的中點(diǎn).
(1)求該圓錐的側(cè)面積S;
(2)求證:平面PAC平面POD;
(3)若,在三棱錐A-PBC中,求點(diǎn)A到平面PBC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,三棱柱ABCA1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.
(1)證明:AB⊥A1C;
(2)若AB=CB=2,A1C=,求三棱柱ABCA1B1C1的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com