【題目】坐標系與參數(shù)方程:在平面直角坐標系中,以原點為極點,軸的非負半軸為極軸建立極坐標系,已知點的極坐標為,直線的極坐標方程為,且點在直線上
(Ⅰ)求的值和直線的直角坐標方程及的參數(shù)方程;
(Ⅱ)已知曲線的參數(shù)方程為,(為參數(shù)),直線與交于兩點,求的值
【答案】(Ⅰ),的直角坐標方程為,的參數(shù)方程為:(Ⅱ)
【解析】
(Ⅰ)將點的極坐標方程代入直線的極坐標方程可求出的值,然后將直線方程化為普通方程,確定直線的傾斜角,即可將直線的方程表示為參數(shù)方程的形式;
(Ⅱ)將曲線的參數(shù)方程表示普通方程,然后將(Ⅰ)中直線的參數(shù)方程與曲線的普通方程聯(lián)立,得到關(guān)于的一元二次方程,并列出韋達定理,根據(jù)的幾何意義計算出
和,于是可得出
的值。
解:(Ⅰ)因為點,所以;
由得
于是的直角坐標方程為;
的參數(shù)方程為: (t為參數(shù))
(Ⅱ)由: ,
將的參數(shù)方程代入得
,設(shè)該方程的兩根為,由直線的參數(shù)的幾何意義及曲線知,
,
所以。
科目:高中數(shù)學 來源: 題型:
【題目】下表是某公司2018年5~12月份研發(fā)費用(百萬元)和產(chǎn)品銷量(萬臺)的具體數(shù)據(jù):
月 份 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
研發(fā)費用(百萬元) | 2 | 3 | 6 | 10 | 21 | 13 | 15 | 18 |
產(chǎn)品銷量(萬臺) | 1 | 1 | 2 | 2.5 | 6 | 3.5 | 3.5 | 4.5 |
(Ⅰ)根據(jù)數(shù)據(jù)可知與之間存在線性相關(guān)關(guān)系,求出與的線性回歸方程(系數(shù)精確到0.01);
(Ⅱ)該公司制定了如下獎勵制度:以(單位:萬臺)表示日銷售,當
參考數(shù)據(jù):,,,,
參考公式:相關(guān)系數(shù),其回歸直線中的,若隨機變量服從正態(tài)分布,則,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)橢圓的左焦點為,右頂點為,離心率為.已知是拋物線的焦點, 到拋物線的準線的距離為.
(I)求橢圓的方程和拋物線的方程;
(II)設(shè)上兩點, 關(guān)于軸對稱,直線與橢圓相交于點(異于點),直線與軸相交于點.若的面積為,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知定點,點在軸上運動,點在軸上運動,點為坐標平面內(nèi)的動點,且滿足,.
(1)求動點的軌跡的方程;
(2)過曲線第一象限上一點(其中)作切線交直線于點,連結(jié)并延長交直線于點,求當面積取最小值時切點的橫坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】橢圓的離心率是,且以兩焦點間的線段為直徑的圓的內(nèi)接正方形面積是.
(1)求橢圓的方程;
(2)過左焦點的直線與相交于、兩點,直線,過作垂直于的直線與直線交于點,求的最小值和此時的直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓,過點作的異于軸的切線,過點作的異于軸的切線.設(shè)與交于點,記的軌跡為.
(1)求的方程;
(2)已知,在點處的切線交直線于點,過原點與平行的直線交于點.證明:以為直徑的圓截軸的弦長為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知矩形中,,E,F分別為,的中點.沿將矩形折起,使,如圖所示.設(shè)P、Q分別為線段,的中點,連接.
(1)求證:平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠擬修建一個無蓋的圓柱形蓄水池(不計厚度).設(shè)該蓄水池的底面半徑為米,高為米,體積為立方米.假設(shè)建造成本僅與表面積有關(guān),側(cè)面的建造成本為100元/平方米,底面的建造成本為160元/平方米,該蓄水池的總建造成本為元(為圓周率).該蓄水池的體積最大時______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直角梯形中,E,F分別為AB的三等分點,,,,若沿著FG,ED折疊使得點A,B重合,如圖2所示,連結(jié)GC,BD
(1)求證:平面平面BCDE;
(2)求二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com