在△ABC中,A最大,C最小,且A=2C,a+c=2b,求此三角形的三邊之比.
分析:利用A=2C通過(guò)正弦定理求出cosC,利用余弦定理推出a與c的比值,然后求出三邊的比值.
解答:解:由正弦定理得
a
c
=
sinA
sinC
=
sin2C
sinC
=2cosC,即cosC=
a
2c

由余弦定理得cosC=
a2+b2-c2
2ab
=
(a+c)(a-c)+b2
2ab
,
∵a+c=2b,
∴cosC=
2b(a-c)+b•
a+c
2
2ab
=
2(a-c)+
a+c
2
2a

a
2c
=
2(a-c)+
a+c
2
2a

整理得2a2-5ac+3c2=0,解得a=
3
2
c,a=c(舍去因?yàn)锳=2C)又a+c=2b,
所以a:b=6:5.所以a:b:c=6:5:4
三角形的三邊之比為:6:5:4.
點(diǎn)評(píng):本題考查最新的與余弦定理的應(yīng)用,考查邏輯推理能力與計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:044

ABC中,A最大,C最小,且A=2C,a+c=2b,求此三角形三邊之比.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:設(shè)計(jì)必修五數(shù)學(xué)人教A版 人教A版 題型:044

在△ABC中,A最大,C最小,且A=2C,a+c=2b,求此三角形三邊之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在△ABC中,A最大,C最小,且A=2C,a+c=2b,求此三角形的三邊之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,A最大,C最小,且A=2C,a+c=2b,求此三角形三邊之比.

   

查看答案和解析>>

同步練習(xí)冊(cè)答案