給出下列結(jié)論.
①命題“?x∈R,cosx>0”的否定是“?x∈R,cosx≤0”;
②將函數(shù)的圖象上每個(gè)點(diǎn)的橫坐標(biāo)縮短為原來(lái)的(縱坐標(biāo)不變),再向左平行移動(dòng)個(gè)單位長(zhǎng)度變?yōu)楹瘮?shù)的圖象;
③已知ξ~N(16,σ2),若P(ξ>17)=0.35,則P(15<ξ<16)=0.15;
④已知函數(shù)f(x)=|lgx|,若0<a<b,且f(a)=f(b),則a+2b的取值范圍是;
其中真命題的序號(hào)是    (把所有真命題的序號(hào)都填上).
【答案】分析:①直接把語(yǔ)句進(jìn)行否定即可,注意否定時(shí)?對(duì)應(yīng)?,>對(duì)應(yīng)≤.
②先進(jìn)行ω伸縮變換,再根據(jù)左加右減的性質(zhì)先左右平移即可得到答案.
③根據(jù)隨機(jī)變量ξ服從標(biāo)準(zhǔn)正態(tài)分布N(16,σ2),得到正態(tài)曲線關(guān)于ξ=16對(duì)稱,得到變量小于15的概率,這樣要求的概率是用0.5減去P(ξ>17)的值即得.
④畫出函數(shù)f(x)的圖象,則數(shù)形結(jié)合可知0<a<1,b>1,且ab=1,再將所求a+2b化為關(guān)于a的一元函數(shù),利用函數(shù)單調(diào)性求函數(shù)的值域即可.
解答:解:①根據(jù)題意我們直接對(duì)語(yǔ)句進(jìn)行否定,
命題“?x∈R,cosx>0”的否定是“?x∈R,cosx≤0”;正確.
②:由=sinx的圖象上每個(gè)點(diǎn)的橫坐標(biāo)縮短為原來(lái)的(縱坐標(biāo)不變),得到y(tǒng)=sin2x,
再向左平行移動(dòng)個(gè)單位長(zhǎng)度變?yōu)楹瘮?shù)y=sin2(x+)=sin(2x+).
故不正確.
③:∵隨機(jī)變量ξ服從標(biāo)準(zhǔn)正態(tài)分布N(16,σ2),
∴正態(tài)曲線關(guān)于ξ=16對(duì)稱,
∵P(ξ>17)=0.35
若P(ξ<15)=0.35,
則P(15<ξ<16)=0.5-0.35=0.15,正確;
④:畫出y=|lgx|的圖象如圖:
∵0<a<b,且f(a)=f(b),
∴|lga|=|lgb|且0<a<1,b>1
∴-lga=lgb
即ab=1
∴y=a+2b=a+,a∈(0,1)
∵y=a+在(0,1)上為減函數(shù),
∴y>1+2=3
∴a+2b的取值范圍是(3,+∞),故不正確.
故答案為:①③
點(diǎn)評(píng):本題考查函數(shù)的變換,函數(shù)的單調(diào)性,特稱命題,正態(tài)分布曲線的特點(diǎn)及曲線所表示的意義,考查學(xué)生分析問(wèn)題解決問(wèn)題的能力,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:?x∈R,使sinx=
5
2
;命題q:?x∈R,都有x2+x+1>0.給出下列結(jié)論:
①命題“p∧q”是真命題;
②命題“p∧¬q”是假命題;
③命題“¬p∨q”是真命題;
④命題“¬p∨¬q”是假命題.
其中正確的是( 。
A、②③B、②④C、③④D、①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:?x∈R,使sin x=
5
2
;命題q:?x∈R,都有x2+x+1>0.給出下列結(jié)論:①命題“p∧q”是真命題;②命題“p∧非q”是假命題;③命題“非p∨q”是真命題;④命題“非p∨非q”是假命題、其中正確的是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

5、已知命題p:?x0∈R,使log2x0>0命題q:?x∈R,都有x2+x+1>0.給出下列結(jié)論:
①命題“p∧q”是真命題②命題“p∧¬q”是假命題
③命題“¬p∪q”是真命題;④命題“¬p∪¬q”是假命題
其中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列結(jié)論:
①命題p:a>
2
3
時(shí),函數(shù)y=(3a-1)x在(-∞,+∞)上是增函數(shù);命題q:n∈N*,時(shí),函數(shù)y=xn在(-∞,+∞)上是增函數(shù),則命題p∧q是真命題;
②命題“若lgx>lgy,則x>y”的逆命題是真命題;
③已知直線l1:ax+3y-1=0,l2:x+by+1=0,“若l1⊥l2,則
a
b
=-3”是假命題;
④設(shè)α、β是兩個(gè)不同的平面,a、b是兩條不同的直線.“若a∥α,b∥β,a∥b,則α∥β”是假命題.
其中正確結(jié)論的序號(hào)是
 
.(把你認(rèn)為正確結(jié)論的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:在銳角三角形ABC中,?A,B,使sinA<cosB;命題q:?x∈R,都有x2+x+1>0,給出下列結(jié)論:
①命題“p∧q”是真命題;           
②命題“¬p∨q”是真命題;
③命題“¬p∨¬q”是假命題;       
④命題“p∧¬q”是假命題;
其中正確結(jié)論的序號(hào)是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案