如圖,四棱錐P-ABCD中,PA⊥底面ABCD,PA=2
3
,BC=CD=2,∠ACB=∠ACD=
π
3

(Ⅰ)求證:BD⊥平面PAC;
(Ⅱ)若側(cè)棱PC上的點F滿足PF=7FC,求三棱錐P-BDF的體積.
(Ⅰ)∵BC=CD=2,∴△BCD為等腰三角形,再由 ∠ACB=∠ACD=
π
3
,∴BD⊥AC.
再由PA⊥底面ABCD,可得PA⊥BD.
而PA∩AC=A,故BD⊥平面PAC.
(Ⅱ)∵側(cè)棱PC上的點F滿足PF=7FC,
∴三棱錐F-BCD的高是三棱錐P-BCD的高的
1
8

△BCD的面積S△BCD=
1
2
BC•CD•sin∠BCD=
1
2
×2×2×sin
3
=
3

∴三棱錐P-BDF的體積 V=VP-BCD-VF-BCD=
1
3
•S△BCD•PA
-
1
3
•S△BCD
1
8
•PA
=
7
8
×
1
3
•S△BCD•PA

=
7
24
×
3
×2
3
=
7
4
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖:已知四邊形ABCD是正方形,PD⊥平面ABCD,PD=AD,點E,F(xiàn)分別是線段PB,AD的中點
(1)求證:FE平面PCD;
(2)求異面直線DE與AB所成的角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在長方體ABCD-A1B1C1D1中,E是DD1的中點.
(1)求證:BD1平面ACE
(2)過直線BD1是否存在與平面ACE平行的平面,若存在,請作出這個平面與長方體ABCD-A1B1C1D1的交線(請在答題卡上用黑色碳素筆和直尺作圖),并證明這兩個平面平行;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(y的的7•海南)如圖,在三棱錐S-ABC中,側(cè)面SAB與側(cè)面SAC均為等邊三角形,∠BAC=9的°,O為BC中點.
(Ⅰ)證明:SO⊥平面ABC;
(Ⅱ)求二面角A-SC-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖四棱錐P-ABCD中,底面ABCD是平行四邊形,∠ACB=90°,PA⊥平面ABCD,F(xiàn)是BC的中點.
(1)求證:DA⊥平面PAC;
(2)試在線段PD上確定一點G,使CG平面PAF,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,在四棱錐P-ABCD中,PD⊥平面ABCD,AD⊥CD,AD=CD,DB平分∠ADC,E為PC的中點.求證:
(1)PA平面BDE;
(2)AC⊥平面PBD.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在長方體ABCD-A1B1C1D1中,E,F(xiàn)分別是AD,DD1的中點,AB=BC=2,A1A=2
2

(Ⅰ)求證:EF平面A1BC1;
(Ⅱ)在線段BC1是否存在點P,使直線A1P與C1D垂直,如果存在,求線段A1P的長,如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

棱長為1的正方體ABCD-A1B1C1D1中,點M,N分別在線段AB1,BC1上,且AM=BN,給出以下結(jié)論:其中正確的結(jié)論的個數(shù)為( 。
①AA1⊥MN
②異面直線AB1,BC1所成的角為60°
③四面體B1-D1CA的體積為
1
3

④A1C⊥AB1,A1C⊥BC1
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在三棱柱ABC-A1B1C1中,每個側(cè)面均為正方形,D為底邊AB的中點,E為側(cè)棱CC1的中點,AB1與A1B的交點為O.
(1)求證:CD平面A1EB;
(2)求證:AB1⊥平面A1EB.

查看答案和解析>>

同步練習冊答案