選修4-5:不等式選講
若關(guān)于x的方程 x2-4x+|a|+|a-3|=0有實根
(1)求實數(shù)a的取值集合A
(2)若存在a∈A,使得不等式t2-2a|t|+12<0成立,求實數(shù)t的取值范圍.
【答案】
分析:(1)根據(jù)關(guān)于x的方程 x
2-4x+|a|+|a-3|=0有實根,可得△≥0,解不等式即可求得結(jié)果;
(2)存在a∈A,使得不等式t
2-2a|t|+12<0成立,構(gòu)造函數(shù)f(a)=t
2-2a|t|+12,轉(zhuǎn)化為函數(shù)的最小值小于零即可,解此不等式即可求得實數(shù)t的取值范圍.
解答:解:(1)∵關(guān)于x的方程 x
2-4x+|a|+|a-3|=0有實根,
∴△=16-4(|a|+|a-3|)≥0,
即
,
∴A=[
];
(2)令f(a)=t
2-2a|t|+12,
∵存在a∈A,使得不等式t
2-2a|t|+12<0成立,
∴f(a)
min<0即可,即f(
)=t
2-7|t|+12<0,
∴3<|t|<4,
∴-4<t<-3或3<t<4.
點評:本題考查二次函數(shù)的根的問題,別更主元,構(gòu)造函數(shù)f(a)=t
2-2a|t|+12,轉(zhuǎn)化為函數(shù)的最小值是解題的關(guān)鍵和難點,考查運算能力和轉(zhuǎn)化能力,屬中檔題.