【題目】已知函數(shù).
(1)討論的極值點(diǎn)的個數(shù);
(2)設(shè)函數(shù),,為曲線上任意兩個不同的點(diǎn),設(shè)直線的斜率為,若恒成立,求的取值范圍.
【答案】(1)當(dāng)時,極值點(diǎn)的個數(shù)為0;當(dāng)時,的極值點(diǎn)的個數(shù)為1;當(dāng)或時,的極值點(diǎn)個數(shù)為2.
(2)
【解析】
(1)函數(shù)求導(dǎo)得的根,對根進(jìn)行討論得到函數(shù)單調(diào)區(qū)間從而求得極值.
(2)令,求出.等價轉(zhuǎn)換得,構(gòu)造新函數(shù)求導(dǎo)轉(zhuǎn)化為不等式恒成立問題求解.
解:(1)函數(shù)的定義域?yàn)?/span>,
.
令,得或.
①當(dāng),即時,
在和上,,在上,,當(dāng)時,取得極大值,當(dāng)時,取得極小值,故有兩個極值點(diǎn);
②當(dāng),即時,
在和上,,在上,,同上可知有兩個極值點(diǎn);
③當(dāng),即時,
,在上單調(diào)遞增,無極值點(diǎn);
④當(dāng),即時,
在上,,在上,,當(dāng)時,取得極小值,無極大值,故只有一個極值點(diǎn).
綜上,當(dāng)時,極值點(diǎn)的個數(shù)為0;當(dāng)時,的極值點(diǎn)的個數(shù)為1;當(dāng)或時,的極值點(diǎn)個數(shù)為2.
(2)令,則,設(shè),,,則.
不妨設(shè),則由恒成立,可得恒成立.
令,則在上單調(diào)遞增,所以在上恒成立,即恒成立.
則恒成立,即恒成立.
又,所以恒成立,則,
因?yàn)?/span>,所以,
解得,即的取值范圍為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左頂點(diǎn)為,左、右焦點(diǎn)分別為,離心率為,是橢圓上的一個動點(diǎn)(不與左、右頂點(diǎn)重合),且的周長為6,點(diǎn)關(guān)于原點(diǎn)的對稱點(diǎn)為,直線交于點(diǎn).
(1)求橢圓方程;
(2)若直線與橢圓交于另一點(diǎn),且,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線:的離心率,其左焦點(diǎn)到此雙曲線漸近線的距離為.
(1)求雙曲線的方程;
(2)若過點(diǎn)的直線交雙曲線于兩點(diǎn),且以為直徑的圓過原點(diǎn),求圓的圓心到拋物線的準(zhǔn)線的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠為提高生產(chǎn)效率,需引進(jìn)一條新的生產(chǎn)線投入生產(chǎn),現(xiàn)有兩條生產(chǎn)線可供選擇,生產(chǎn)線①:有A,B兩道獨(dú)立運(yùn)行的生產(chǎn)工序,且兩道工序出現(xiàn)故障的概率依次是0.02,0.03.若兩道工序都沒有出現(xiàn)故障,則生產(chǎn)成本為15萬元;若A工序出現(xiàn)故障,則生產(chǎn)成本增加2萬元;若B工序出現(xiàn)故障,則生產(chǎn)成本增加3萬元;若A,B兩道工序都出現(xiàn)故障,則生產(chǎn)成本增加5萬元.生產(chǎn)線②:有a,b兩道獨(dú)立運(yùn)行的生產(chǎn)工序,且兩道工序出現(xiàn)故障的概率依次是0.04,0.01.若兩道工序都沒有出現(xiàn)故障,則生產(chǎn)成本為14萬元;若a工序出現(xiàn)故障,則生產(chǎn)成本增加8萬元;若b工序出現(xiàn)故障,則生產(chǎn)成本增加5萬元;若a,b兩道工序都出現(xiàn)故障,則生產(chǎn)成本增加13萬元.
(1)若選擇生產(chǎn)線①,求生產(chǎn)成本恰好為18萬元的概率;
(2)為最大限度節(jié)約生產(chǎn)成本,你會給工廠建議選擇哪條生產(chǎn)線?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)由方程確定,對于函數(shù)給出下列命題:
①存在,,使得成立;
②,,使得且同時成立;
③對于任意,恒成立;
④對任意,,;都有恒成立.
其中正確的命題共有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣a|﹣|x﹣5|.
(1)當(dāng)a=2時,求證:﹣3≤f(x)≤3;
(2)若關(guān)于x的不等式f(x)≤x2﹣8x+20在R恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓與圓相外切,且與直線相切.
(1)記圓心的軌跡為曲線,求的方程;
(2)過點(diǎn)的兩條直線與曲線分別相交于點(diǎn)和,線段和的中點(diǎn)分別為.如果直線與的斜率之積等于1,求證:直線經(jīng)過定點(diǎn).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com