【題目】如圖,四棱錐P-ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M為線段AD上一點(diǎn),AM=2MD,N為PC的中點(diǎn).
(1)證明MN∥平面PAB;
(2)求四面體N-BCM的體積.
【答案】(1)見(jiàn)解析;(2)
【解析】試題分析:(1)取的中點(diǎn),連接,證得,得出,
即,再用線面平行的判定定理,即可作出證明;
(2)根據(jù)題意,得出到的距離為,得出,再利用三棱錐的體積公式,即可求得三棱錐的體積.
試題解析:
(1)證明:由已知得AM=AD=2,如圖,取BP的中點(diǎn)T,連接AT,TN,由N為PC中點(diǎn)知TN∥BC,TN=BC=2.又AD∥BC,故,所以四邊形AMNT為平行四邊形,
于是MN∥AT.因?yàn)?/span>AT平面PAB,MN平面PAB,所以MN∥平面PAB.
(2)因?yàn)?/span>PA⊥平面ABCD,N為PC的中點(diǎn),所以N到平面ABCD的距離為PA.
如圖,取BC的中點(diǎn)E,連接AE,由AB=AC=3得AE⊥BC,AE==.
由AM∥BC得M到BC的距離為,故S△BCM=×4×=2,
所以四面體N-BCM的體積VN-BCM==.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知橢圓 =1(a>b>0),F(xiàn)1、F2分別為橢 圓的左、右焦點(diǎn),A為橢圓的上頂點(diǎn),直線AF2交橢圓于另一點(diǎn)B、
(1)若∠F1AB=90°,求橢圓的離心率;
(2)若 =2 , = ,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,PO⊥平面ABC,BO⊥AC,在圖中與AC垂直的直線有 ( )
A. 1條 B. 2條 C. 3條 D. 4條
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A(0,0),B(1,0),C(2,1),D(0,3),將四邊形ABCD繞y軸旋轉(zhuǎn)一周,求所得旋轉(zhuǎn)體的表面積和體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形OBCD的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,一邊在x軸的正半軸上,已知∠BOD=60°,求菱形各邊和兩條對(duì)角線所在直線的傾斜角及斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=ex(x﹣aex) 恰有兩個(gè)極值點(diǎn)x1 , x2(x1<x2),則a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某縣相鄰兩鎮(zhèn)在一平面直角坐標(biāo)系下的坐標(biāo)為A(1,2)、B(4,0),一條河所在直線方程為l:x+2y-10=0,若在河邊l上建一座供水站P使之到A、B兩鎮(zhèn)的管道最省,問(wèn)供水站P應(yīng)建在什么地方?此時(shí)|PA|+|PB|為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某食品的保鮮時(shí)間t(單位:小時(shí))與儲(chǔ)藏溫度x(單位:℃)滿足函數(shù)關(guān)系t=且該食品在4℃的保鮮時(shí)間是16小時(shí)。已知甲在某日上午10時(shí)購(gòu)買(mǎi)了該食品,并將其遺放在室外,且此日的室外溫度隨時(shí)間變化如圖所示。給出以下四個(gè)結(jié)論:
①該食品在6℃的保鮮時(shí)間是8小時(shí);
②當(dāng)x∈[-6,6]時(shí),該食品的保鮮時(shí)間t隨著x增大而逐漸減少;
③到了此日13時(shí),甲所購(gòu)買(mǎi)的食品還在保鮮時(shí)間內(nèi);
④到了此日14時(shí),甲所購(gòu)買(mǎi)的食品已然過(guò)了保鮮時(shí)間。
其中,所有正確結(jié)論的序號(hào)是__________。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)的圖象經(jīng)過(guò)點(diǎn),且函數(shù)= 是偶函數(shù)
(1)求的解析式;
(2)已知,求函數(shù)在的最大值和最小值
(3)函數(shù)的圖象上是否存在這樣的點(diǎn),其橫坐標(biāo)是正整數(shù),縱坐標(biāo)是一個(gè)完全平方數(shù)?如果存在,求出這樣的點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com