滿足條件{1}={1,2}的集合M的個(gè)數(shù)是( )
A.1; B.2; C.3; D.4;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
3 |
2 |
1 |
π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:044
設(shè)f(x)滿足條件:(1)f(x)=f(-x+4),x∈R;(2)當(dāng)x>2時(shí),f(x)為增函數(shù),比較下列三個(gè)函數(shù)值,a=f[(1.1)0.9],b=f[(0.9)1.1],c=f(16)的大小關(guān)系
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:北京市海淀區(qū)2010屆高三上學(xué)期期中考試數(shù)學(xué)理科試題 題型:013
對(duì)于定義域?yàn)镽的函數(shù)f(x),給出下列命題:
①若函數(shù)f(x)滿足條件f(x-1)+f(1-x)=2,則函數(shù)f(x)的圖象關(guān)于點(diǎn)(0,1)對(duì)稱;
②若函數(shù)f(x)滿足條件f(x-1)=f(1-x),則函數(shù)f(x)的圖象關(guān)于y軸對(duì)稱;
③在同一坐標(biāo)系中,函數(shù)y=f(x-1)與y=f(1-x)其圖象關(guān)于直線x=1對(duì)稱;
④在同一坐標(biāo)系中,函數(shù)y=f(1+x)與y=f(1-x)其圖象關(guān)于y軸對(duì)稱.
其中,真命題的個(gè)數(shù)是
1
2
3
4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(1)設(shè){bn}是項(xiàng)數(shù)為7的“對(duì)稱數(shù)列”,其中b1,b2,b3,b4是等差數(shù)列,且b1=2,b4=11.依次寫出{bn}的每一項(xiàng).
(2)設(shè){cn}是項(xiàng)數(shù)為2k-1(正整數(shù)k>1)的“對(duì)稱數(shù)列”,其中ck,ck+1,…,c2k-1是首項(xiàng)為50,公差為-4的等差數(shù)列.記{cn}各項(xiàng)的和為S2k-1,當(dāng)k為何值時(shí),S2k-1取得最大值?并求出S2k-1的最大值.
(3)對(duì)于確定的正整數(shù)m>1,寫出所有項(xiàng)數(shù)不超過2m的“對(duì)稱數(shù)列”,使得1,2,22,…,2m-1依次是該數(shù)列中連續(xù)的項(xiàng);當(dāng)m>1 500時(shí),求其中一個(gè)“對(duì)稱數(shù)列”前2 008項(xiàng)的和S2008.
(文)如果有窮數(shù)列a1,a2,a3,…,am(m為正整數(shù))滿足條件a1=am,a2=am-1,…,am=a1,即ai=am-i+1(i=1,2,…,m),我們稱其為“對(duì)稱數(shù)列”.例如,數(shù)列1,2,5,2,1與數(shù)列8,4,2,2,4,8都是“對(duì)稱數(shù)列”.
(1)設(shè){bn}是7項(xiàng)的“對(duì)稱數(shù)列”,其中b1,b2,b3,b4是等差數(shù)列,且b1=2,b4=11.依次寫出{bn}的每一項(xiàng);
(2)設(shè){cn}是49項(xiàng)的“對(duì)稱數(shù)列”,其中c25,c26,…,c49是首項(xiàng)為1,公比為2的等比數(shù)列,求{cn}各項(xiàng)的和S;
(3)設(shè){dn}是100項(xiàng)的“對(duì)稱數(shù)列”,其中d51,d52,…,d100是首項(xiàng)為2,公差為3的等差數(shù)列,求{dn}前n項(xiàng)的和Sn(n=1,2,…,100).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com