已知函數(shù)f(x)=(x-a)(x-b)2,a,b是常數(shù).
(1)若a≠b,求證:函數(shù)f(x)存在極大值和極小值;
(2)設(1)中f(x)取得極大值、極小值時自變量的值分別為x1,x2,設點A(x1,f(x1)),B(x2,f(x2)).如果直線AB的斜率為-,求函數(shù)f(x)和f′(x)的公共遞減區(qū)間的長度;
(3)若f(x)≥mxf′(x)對于一切x∈R恒成立,求實數(shù)m,a,b滿足的條件.

(1)見解析    (2)公共減區(qū)間為,長度均為
(3)m=,a=b≤0.

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

函數(shù).
(1)討論的單調性;
(2)設,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

一物體沿直線以速度的單位為:秒,的單位為:米/秒)的速度作變速直線運動,求該物體從時刻t=0秒至時刻 t=5秒間運動的路程?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(1)當時,討論函數(shù)的單調性;
(2)當時,在函數(shù)圖象上取不同兩點A、B,設線段AB的中點為,試探究函數(shù)在Q點處的切線與直線AB的位置關系?
(3)試判斷當圖象是否存在不同的兩點A、B具有(2)問中所得出的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=x2-(1+2a)x+aln x(a為常數(shù)).
(1)當a=-1時,求曲線y=f(x)在x=1處切線的方程;
(2)當a>0時,討論函數(shù)y=f(x)在區(qū)間(0,1)上的單調性,并寫出相應的單調區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)為小于的常數(shù)).
(1)當時,求函數(shù)的單調區(qū)間;
(2)存在使不等式成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(13分)(2011•重慶)設f(x)=x3+ax2+bx+1的導數(shù)f′(x)滿足f′(1)=2a,f′(2)=﹣b,其中常數(shù)a,b∈R.
(Ⅰ)求曲線y=f(x)在點(1,f(1))處的切線方程.
(Ⅱ)設g(x)=f′(x)e﹣x.求函數(shù)g(x)的極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知,函數(shù),
(1)若曲線與曲線在它們的交點處的切線互相垂直,求,的值;
(2)設,若對任意的,且,都有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(2011•浙江)設函數(shù)f(x)=(x﹣a)2lnx,a∈R
(1)若x=e為y=f(x)的極值點,求實數(shù)a;
(2)求實數(shù)a的取值范圍,使得對任意的x∈(0,3e],恒有f(x)≤4e2成立.
注:e為自然對數(shù)的底數(shù).

查看答案和解析>>

同步練習冊答案