【題目】在平面直角坐標(biāo)系中,橫坐標(biāo)、縱坐標(biāo)均為整數(shù)的點(diǎn)稱為整點(diǎn),如果函數(shù)f(x)的圖象恰好通過(guò)n()個(gè)整點(diǎn),則稱函數(shù)f(x)為n階整點(diǎn)函數(shù)。有下列函數(shù):

其中是一階整點(diǎn)的是( )

A. ①②③④ B. ①③④ C. D. ①④

【答案】D

【解析】

根據(jù)新定義的“一階整點(diǎn)函數(shù)”的要求,對(duì)于四個(gè)函數(shù)一一加以分析,它們的圖象是否通過(guò)一個(gè)整點(diǎn),從而選出答案即可.

對(duì)于函數(shù),它只通過(guò)一個(gè)整點(diǎn)(1,2),故它是一階整點(diǎn)函數(shù);
對(duì)于函數(shù),當(dāng)x∈Z時(shí),一定有g(shù)(x)=x3∈Z,即函數(shù)g(x)=x3通過(guò)無(wú)數(shù)個(gè)整點(diǎn),它不是一階整點(diǎn)函數(shù);
對(duì)于函數(shù),當(dāng)x=0,-1,-2,時(shí),h(x)都是整數(shù),故函數(shù)h(x)通過(guò)無(wú)數(shù)個(gè)整點(diǎn),它不是一階整點(diǎn)函數(shù);
對(duì)于函數(shù),它只通過(guò)一個(gè)整點(diǎn)(1,0),故它是一階整點(diǎn)函數(shù).
故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax2+1(a>0),g(x)=x3+bx
(1)若曲線y=f(x)與曲線y=g(x)在它們的交點(diǎn)(1,c)處具有公共切線,求a、b的值;
(2)當(dāng)a2=4b時(shí),求函數(shù)f(x)+g(x)的單調(diào)區(qū)間,并求其在區(qū)間(﹣∞,﹣1)上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x+alnx在x=1處的切線與直線x+2y=0垂直,函數(shù)g(x)=f(x)+ x2﹣bx.
(1)求實(shí)數(shù)a的值;
(2)若函數(shù)g(x)存在單調(diào)遞減區(qū)間,求實(shí)數(shù)b的取值范圍;
(3)設(shè)x1 , x2(x1<x2)是函數(shù)g(x)的兩個(gè)極值點(diǎn),若b≥ ,求g(x1)﹣g(x2)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) 為自然對(duì)數(shù)的底數(shù)).

(1)討論函數(shù)的單調(diào)性;

(2)當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知兩動(dòng)圓F1:(x+ 2+y2=r2和F2:(x﹣ 2+y2=(4﹣r)2(0<r<4),把它們的公共點(diǎn)的軌跡記為曲線C,若曲線C與y軸的正半軸的交點(diǎn)為M,且曲線C上的相異兩點(diǎn)A,B滿足: =0.
(1)求曲線C的方程;
(2)證明直線AB恒經(jīng)過(guò)一定點(diǎn),并求此定點(diǎn)的坐標(biāo);
(3)求△ABM面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=log2x+ ,若x1∈(1,2),x2∈(2,+∞),則(
A.f(x1)<0,f(x2)<0
B.f(x1)<0,f(x2)>0
C.f(x1)>0,f(x2)<0
D.f(x1)>0,f(x2)>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 滿足(1﹣q)Sn+qan=1,且q(q﹣1)≠0.
(1)求{an}的通項(xiàng)公式;
(2)若S3 , S9 , S6成等差數(shù)列,求證:a2 , a8 , a5成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= x2﹣(a2﹣a)lnx﹣x(a<0),且函數(shù)f(x)在x=2處取得極值.
(1)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若x∈[1,e],f(x)﹣m≤0成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中石化集團(tuán)獲得了某地深海油田塊的開(kāi)采權(quán),集團(tuán)在該地區(qū)隨機(jī)初步勘探了部分幾口井,取得了地質(zhì)資料.進(jìn)入全面勘探時(shí)期后,集團(tuán)按網(wǎng)絡(luò)點(diǎn)米布置井位進(jìn)行全面勘探.由于勘探一口井的費(fèi)用很高,如果新設(shè)計(jì)的井位與原有井位重合或接近,便利用舊井的地質(zhì)資料,不必打這口新井,以節(jié)約勘探費(fèi)用,勘探初期數(shù)據(jù)資料見(jiàn)下表:

井號(hào)

1

2

3

4

5

6

坐標(biāo)(x,y)(km)

(2,30)

(4,40)

(5,60)

(6,50)

(8,70)

(1,y)

鉆探深度(km)

2

4

5

6

8

10

出油量(L)

40

70

110

90

160

205

(Ⅰ)1~6號(hào)舊井位置線性分布,借助前5組數(shù)據(jù)求得回歸直線方程為y=6.5x+a,求a,并估計(jì)y的預(yù)報(bào)值;

(Ⅱ)現(xiàn)準(zhǔn)備勘探新井7(1,25),若通過(guò)1、3、5、7號(hào)井計(jì)算出的,的值(精確到0.01)與(I)中b,a的值差不超過(guò)10%,則使用位置最接近的已有舊井6(1,y),否則在新位置打開(kāi),請(qǐng)判斷可否使用舊井?(參考公式和計(jì)算結(jié)果:,,

(Ⅲ)設(shè)出油量與勘探深度的比值k不低于20的勘探井稱為優(yōu)質(zhì)井,那么在原有6口井中任意勘探4口井,求勘探優(yōu)質(zhì)井?dāng)?shù)X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案