【題目】已知數(shù)列滿(mǎn)足,,其前n項(xiàng)和,則下列說(shuō)法正確的個(gè)數(shù)是(

①數(shù)列是等差數(shù)列;②;③.

A.0B.1C.2D.3

【答案】B

【解析】

a1=﹣1,an+1|1an|+2an+1,可得a2,a3,a4,運(yùn)用等差數(shù)列的定義即可判斷,等比數(shù)列的通項(xiàng)公式即可判斷,由當(dāng)n2時(shí),anSnSn1,即可判斷

解:數(shù)列{an}滿(mǎn)足a1=﹣1,an+1|1an|+2an+1

可得a2|1a1|+2a1+122+11,

a3|1a2|+2a2+10+2+13,

a4|1a3|+2a3+12+6+19,

a4a36a3a22,即有a4a3a3a2,

則數(shù)列{an}不是等差數(shù)列,故不正確;

an3n2,不滿(mǎn)足a1=﹣1,故不正確;

Sn滿(mǎn)足n1時(shí),a1S1=﹣1

n2時(shí),a2S2S1(﹣1)=1

當(dāng)n2時(shí),anSnSn1

3n2,n2,nN*

代入an+1|1an|+2an+1,

左邊=3n1,右邊=3n21+23n2+13n1,

an+1|1an|+2an+1恒成立.

正確.

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線C1y=cos x,C2y=sin (2x+),則下面結(jié)論正確的是( )

A. C1上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個(gè)單位長(zhǎng)度,得到曲線C2

B. C1上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,再把得到的曲線向左平移個(gè)單位長(zhǎng)度,得到曲線C2

C. C1上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的倍,縱坐標(biāo)不變,再把得到的曲線向右平移個(gè)單位長(zhǎng)度,得到曲線C2

D. C1上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的倍,縱坐標(biāo)不變,再把得到的曲線向左平移個(gè)單位長(zhǎng)度,得到曲線C2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),則滿(mǎn)足的實(shí)數(shù)的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,圓的方程為,若直線上至少存在一點(diǎn),使得以該點(diǎn)為圓心,1為半徑的圓與圓有公共點(diǎn),則的最大值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三個(gè)點(diǎn)A2,1),B3,2),D(-1,4).

1)求證:;

2)要使四邊形ABCD為矩形,求點(diǎn)C的坐標(biāo),并求矩形ABCD兩對(duì)角線所夾銳角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)為常數(shù)),方程有兩個(gè)實(shí)根34,

1)求的解析式;

2)設(shè),解關(guān)于x的不等式;

3)已知函數(shù)是偶函數(shù),且上單調(diào)遞增,若不等式在任意上恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為為參數(shù)),設(shè)的交點(diǎn)為,當(dāng)變化時(shí), 的軌跡為曲線.

(1)寫(xiě)出的普遍方程及參數(shù)方程;

(2)以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,設(shè)曲線的極坐標(biāo)方程為 為曲線上的動(dòng)點(diǎn),求點(diǎn)的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={x|1≤x≤3},B={x|x>2}.

Ⅰ)分別求A∩B,(RBA;

Ⅱ)已知集合C={x|1<x<a},若CA,求實(shí)數(shù)a的取值集合

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知ABC的內(nèi)角A,BC所對(duì)邊分別為a、bc,且2acosC=2b-c

1)求角A的大;

2)若AB=3,AC邊上的中線SD的長(zhǎng)為,求ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案