(2012•浦東新區(qū)二模)已知實數(shù)x、y滿足不等式組
x+y≤5
2x+y≤6
x≥0
y≥0
,則z=3x+4y的最大值是
20
20
分析:先根據(jù)約束條件畫出可行域,再利用幾何意義求最值,z=3x+4y中
1
4
z表示在y軸上的截距,要求z得最大值,只需求出可行域直線在y軸上的截距最大值即可.
解答:解:作出不等式組表示的平面區(qū)域如圖所示,
由z=3x+4y得y=-
3
4
x+
z
4
,則
1
4
z表示直線在y軸上的截距,截距越大,z越大,要求z的最大值,則只要求解直線y=-
3
4
x+
z
4
的截距的最大值
結(jié)合圖形可知,當直線z=3x+4y過點C(0,5)時,在y軸上截距最大,z最大
由此時z取得最大值20
故答案為:20
點評:本題主要考查了簡單的線性規(guī)劃,以及利用幾何意義求最值,屬于基礎題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2012•浦東新區(qū)一模)函數(shù)y=
log2(x-2) 
的定義域為
[3,+∞)
[3,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•浦東新區(qū)一模)若X是一個非空集合,M是一個以X的某些子集為元素的集合,且滿足:
①X∈M、∅∈M;
②對于X的任意子集A、B,當A∈M且B∈M時,有A∪B∈M;
③對于X的任意子集A、B,當A∈M且B∈M時,A∩B∈M;
則稱M是集合X的一個“M-集合類”.
例如:M={∅,,{c},{b,c},{a,b,c}}是集合X={a,b,c}的一個“M-集合類”.已知集合X={a,b,c},則所有含{b,c}的“M-集合類”的個數(shù)為
10
10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•浦東新區(qū)二模)手機產(chǎn)業(yè)的發(fā)展催生了網(wǎng)絡新字“孖”.某學生準備在計算機上作出其對應的圖象,其中A(2,2),如圖所示.在作曲線段AB時,該學生想把函數(shù)y=x
1
2
,x∈[0,2]
的圖象作適當變換,得到該段函數(shù)的曲線.請寫出曲線段AB在x∈[2,3]上對應的函數(shù)解析式
y=
2
(x-2)
1
2
+2
y=
2
(x-2)
1
2
+2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•浦東新區(qū)一模)設復數(shù)z滿足|z|=
10
,且(1+2i)z(i是虛數(shù)單位)在復平面上對應的點在直線y=x上,求z.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•浦東新區(qū)二模)已知z=
1
1+i
,則
.
z
=
1
2
+
1
2
i
1
2
+
1
2
i

查看答案和解析>>

同步練習冊答案