精英家教網 > 高中數學 > 題目詳情
(2012•浦東新區(qū)一模)設復數z滿足|z|=
10
,且(1+2i)z(i是虛數單位)在復平面上對應的點在直線y=x上,求z.
分析:設出復數z通過|z|=
10
,且(1+2i)z(i是虛數單位)在復平面上對應的點在直線y=x上,列出方程組,求出復數z即可.
解答:(本題滿分12分)
解:設z=x+yi(x,y∈R),…(1分)
∵|z|=
10
,∴x2+y2=10,…(3分)
而(1+2i)z=(1+2i)(x+yi)=(x-2y)+(2x+y)i,…(6分)
又∵(1+2i)z在復平面上對應的點在直線y=x上,
∴x-2y=2x+y,…(8分)
x2+y2=10
x=-3y
,∴
x=3
y=1
x=-3
y=1
;…(10分)
即z=±(3-i).…(12分)
點評:本題考查復數的基本運算,復數的模的求法,考查計算能力.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2012•浦東新區(qū)一模)函數y=
log2(x-2) 
的定義域為
[3,+∞)
[3,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•浦東新區(qū)一模)若X是一個非空集合,M是一個以X的某些子集為元素的集合,且滿足:
①X∈M、∅∈M;
②對于X的任意子集A、B,當A∈M且B∈M時,有A∪B∈M;
③對于X的任意子集A、B,當A∈M且B∈M時,A∩B∈M;
則稱M是集合X的一個“M-集合類”.
例如:M={∅,,{c},{b,c},{a,b,c}}是集合X={a,b,c}的一個“M-集合類”.已知集合X={a,b,c},則所有含{b,c}的“M-集合類”的個數為
10
10

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•浦東新區(qū)二模)手機產業(yè)的發(fā)展催生了網絡新字“孖”.某學生準備在計算機上作出其對應的圖象,其中A(2,2),如圖所示.在作曲線段AB時,該學生想把函數y=x
1
2
,x∈[0,2]
的圖象作適當變換,得到該段函數的曲線.請寫出曲線段AB在x∈[2,3]上對應的函數解析式
y=
2
(x-2)
1
2
+2
y=
2
(x-2)
1
2
+2

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•浦東新區(qū)二模)已知z=
1
1+i
,則
.
z
=
1
2
+
1
2
i
1
2
+
1
2
i

查看答案和解析>>

同步練習冊答案