【題目】函數(shù),)的部分圖象如圖中實線所示,圖中圓C的圖象交于MN兩點,且My軸上,則下列說法中正確的是(

A.函數(shù)的最小正周期是2π

B.函數(shù)的圖象關(guān)于點成中心對稱

C.函數(shù)單調(diào)遞增

D.將函數(shù)的圖象向左平移后得到的關(guān)于y軸對稱

【答案】C

【解析】

根據(jù)條件求出c的值,結(jié)合三角函數(shù)的周期關(guān)系求出周期,以及對應(yīng)的對稱軸,對稱中心,利用三角函數(shù)的性質(zhì)分別進行判斷即可.

解:根據(jù)函數(shù),)的部分圖象以及圓C的對稱性,

可得,兩點關(guān)于圓心對稱,

,

,

解得:,函數(shù)的周期為,故A錯誤;

∵函數(shù)關(guān)于點對稱,

∴函數(shù)的對稱中心為

則當(dāng)時,對稱中心為,故B不正確;

函數(shù)的一條對稱軸為,

x軸負方向內(nèi),接近于y軸的一條對稱軸為,

由圖像可知,函數(shù)的單調(diào)增區(qū)間為,,

當(dāng)時,函數(shù)的單調(diào)遞增區(qū)間為,故C正確;

的一條對稱軸為

∴函數(shù)的圖象向左平移個單位后,

此時,所得圖象關(guān)于直線對稱,故D錯誤.

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中石化集團獲得了某地深海油田區(qū)塊的開采權(quán),集團在該地區(qū)隨機初步勘探了部分兒口井,取得了地質(zhì)資料.進入全面勘探時期后,集團按網(wǎng)絡(luò)點來布置井位進行全面勘探. 由于勘探一口井的費用很高,如果新設(shè)計的井位與原有井位重合或接近,便利用舊井的地質(zhì)資料,不必打這口新井,以節(jié)約勘探費用.勘探初期數(shù)據(jù)資料見如表:

(Ⅰ)1~6號舊井位置線性分布,借助前5組數(shù)據(jù)求得回歸直線方程為,求,并估計的預(yù)報值;

(Ⅱ)現(xiàn)準備勘探新井,若通過1、3、5、7號井計算出的的值(精確到0.01)相比于(Ⅰ)中的值之差不超過10%,則使用位置最接近的已有舊井,否則在新位置打開,請判斷可否使用舊井?

(參考公式和計算結(jié)果:

(Ⅲ)設(shè)出油量與勘探深度的比值不低于20的勘探并稱為優(yōu)質(zhì)井,那么在原有井號1~6的出油量不低于50L的井中任意勘探3口井,求恰好2口是優(yōu)質(zhì)井的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)若曲線與曲線在它們的某個交點處具有公共切線,求的值;

(Ⅱ)若存在實數(shù)使不等式的解集為,求實數(shù)的取值范圍

(Ⅲ)若方程有三個不同的解,且它們可以構(gòu)成等差數(shù)列,寫出實數(shù)的值(只需寫出結(jié)果).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知、分別為雙曲線的左右焦點,左右頂點為,是雙曲線上任意一點,則分別以線段、為直徑的兩圓的位置關(guān)系為( )

A. 相交B. 相切C. 相離D. 以上情況均有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《朗讀者》以精美的文字,最平實的情感讀出文字背后的價值,感染了眾多聽眾,中央電視臺在2018年推出了《朗讀者第二季》,電視臺節(jié)目組要從2018名觀眾中抽取50名幸運觀眾.先用簡單隨機抽樣從2018人中剔除18人,剩下的2000人再按系統(tǒng)抽樣方法抽取50人,則在2018人中,每個人被抽取的可能性 ( )

A. 都相等,且為B. 都相等,且為C. 均不相等D. 不全相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直角的三邊長,滿足.

Ⅰ)在之間插入個數(shù),使這個數(shù)構(gòu)成以為首項的等差數(shù)列,且它們的和為,求斜邊的最小值;

Ⅱ)已知均為正整數(shù),成等差數(shù)列,將滿足條件的三角形的面積從小到大排成一列,,求滿足不等式的所有的值;

Ⅲ)已知成等比數(shù)列,若數(shù)列滿足,證明:數(shù)列中的任意連續(xù)三項為邊長均可以構(gòu)成直角三角形,是正整數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面中兩條直線ln相交于O,對于平面上任意一點M,若p,q分別是M到直線ln的距離,則稱有序非負實數(shù)對(pq)是點M的“距離坐標(biāo)”.則下列說法正確的(

A.p=q=0,則“距離坐標(biāo)”為(0,0)的點有且僅有一個

B.pq=0,且p+q0,則“距離坐標(biāo)”為(p,q)的點有且僅有2

C.pq0,則“距離坐標(biāo)”為(p,q)的點有且僅有4

D.p=q,則點M的軌跡是一條過O點的直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我們稱一個非負整數(shù)集合(非空)為好集合,若對任意,或者,或者.以下記的元素個數(shù).

給出所有的元素均小于的好集合;(給出結(jié)論即可)

求出所有滿足的好集合;(同時說明理由)

若好集合滿足,求證: 中存在元素,使得中所有元素均為的整數(shù)倍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù)與常數(shù),若恒成立,則稱為函數(shù)的一個“數(shù)對”;設(shè)函數(shù)的定義域為,且.

(Ⅰ)若的一個“數(shù)對”,且,求常數(shù)的值;

(Ⅱ)若的一個“數(shù)對”,求;

(Ⅲ)若的一個“數(shù)對”,且當(dāng), ,求的值及在區(qū)間上的最大值與最小值.

查看答案和解析>>

同步練習(xí)冊答案