12.已知有序?qū)崝?shù)對(duì)(x,y)滿足條件x≤y≤$\sqrt{1-{x}^{2}}$,則x+y的取值范圍是( 。
A.[-2,$\sqrt{2}$]B.[-$\sqrt{2}$,$\sqrt{2}$]C.[-1,$\sqrt{2}$]D.(-∞,$\sqrt{2}$]

分析 畫出不等式組表示的平面區(qū)域,然后利用表達(dá)式的幾何意義,求解范圍即可.

解答 解:有序?qū)崝?shù)對(duì)(x,y)滿足條件x≤y≤$\sqrt{1-{x}^{2}}$,表示的平面區(qū)域
如圖陰影部分:令z=x+y,如圖紅色直線,
顯然,z=x+y經(jīng)過(guò)A時(shí)取得最小值,經(jīng)過(guò)B時(shí)取得最大值.
A(-1,-1),B($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$).
x+y∈[-2,$\sqrt{2}$].
故選:A.

點(diǎn)評(píng) 本題考查線性規(guī)劃的應(yīng)用,考查數(shù)形結(jié)合以及分析問(wèn)題解決問(wèn)題的能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知函數(shù)f(x)=|2x-1|,a<b<c,且f(a)>f(c)>f(b),則下列結(jié)論中,一定成立的是(  )
A.2a+2c<2B.2-a<2cC.a<0,b≥0,c>0D.a<0,b<0,c<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.橢圓$\frac{x^2}{16}$+$\frac{y^2}{12}$=1的左頂點(diǎn)到右焦點(diǎn)的距離為( 。
A.2B.3C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知函數(shù)f(x)是定義R上的偶函數(shù),且以2為周期,則“f(x)為[0,1]上的增函數(shù)”是“f(x)為[3,4]上的減函數(shù)”( 。
A.既不充分也不必要條件B.充分非必要條件
C.必要非充分條件D.充要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知AC,BD為圓O:x2+y2=9的兩條相互垂直的弦,垂足為M(1,$\sqrt{2}$),則四邊形ABCD的面積的最大值為15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.由數(shù)字0、1、2、3、4、5組成沒(méi)有重復(fù)數(shù)字的三位數(shù),其中被5整除的數(shù)有( 。
A.16B.20C.30D.36

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=ax2-4x+2,函數(shù)g(x)=($\frac{1}{3}$)f(x)
(Ⅰ)若y=f(x)的對(duì)稱軸是x=2,求f(x)的解析式;
(Ⅱ)在(Ⅰ)的條件下求出g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知菱形ABCD的邊長(zhǎng)為4,∠DAB=60°,$\overrightarrow{EC}$=3$\overrightarrow{DE}$,則 $\overrightarrow{AE}•\overrightarrow{BE}$的值為( 。
A.7B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.下列判斷正確的是②④.(把正確的序號(hào)都填上)
①集合A={(x,y)|x+y=5},B={(x,y)|x-y=-1},則A∩B={2,3};
②設(shè)f(x)定義在R上的函數(shù),且對(duì)任意m,n有f(m+n)=f(m)•f(n),且當(dāng)x>0時(shí),0<f(x)<1,則f(0)=1,且當(dāng)x<0時(shí),有f(x)>1;
③已知函數(shù)f(x)=$\frac{{\root{3}{3x-1}}}{{a{x^2}+ax-3}}$的定義域是R,則實(shí)數(shù)a的取值范圍是-12<a<0;
④函數(shù)y=-log2x滿足對(duì)定義域內(nèi)任意的x1,x2,都有$f(\frac{{{x_1}+{x_2}}}{2})≤\frac{{f({x_1})+f({x_2})}}{2}$成立.

查看答案和解析>>

同步練習(xí)冊(cè)答案