分析 由圓的方程找出圓心坐標(biāo)為(0,0),半徑r=3,設(shè)圓心O到AC、BD的距離分別為d1、d2,再由M的坐標(biāo),根據(jù)矩形的性質(zhì)及勾股定理得到d12+d22=OM2,由M和O的坐標(biāo),利用兩點(diǎn)間的距離公式求出OM2,進(jìn)而得到d12+d22的值,再由圓的半徑,弦心距及弦長的一半,由半徑的值表示出|AB|與|CD|的長,又四邊形ABCD的兩對(duì)角線互相垂直,得到其面積為兩對(duì)角線乘積的一半,表示出四邊形的面積,并利用基本不等式變形后,將求出的d12+d22的值代入,即可得到面積的最大值.
解答 解:∵圓O:x2+y2=9,
∴圓心O坐標(biāo)(0,0),半徑r=3,
設(shè)圓心O到AC、BD的距離分別為d1、d2,
∵M(jìn)(1,$\sqrt{2}$),
則d12+d22=OM2=12+($\sqrt{2}$)2=3,
又|AC|=2$\sqrt{9-{bt3qa8v_{1}}^{2}}$,|BD|=2$\sqrt{9-{mq194rm_{2}}^{2}}$
∴四邊形ABCD的面積S=$\frac{1}{2}$|AC|•|BD|=2$\sqrt{9-{bxjzwvi_{1}}^{2}}$•$\sqrt{9-{7cla2is_{2}}^{2}}$≤18-(d12+d22)=18-3=15,
當(dāng)且僅當(dāng)d12 =d22時(shí)取等號(hào),
則四邊形ABCD面積的最大值為15.
故答案為:15.
點(diǎn)評(píng) 此題考查了直線與圓的位置關(guān)系,涉及的知識(shí)有:圓的標(biāo)準(zhǔn)方程,垂徑定理,勾股定理,對(duì)角線互相垂直的四邊形面積的求法,以及基本不等式的運(yùn)用,當(dāng)直線與圓相交時(shí),常常根據(jù)垂徑定理由垂直得中點(diǎn),進(jìn)而由弦長的一半,圓的半徑及弦心距構(gòu)造直角三角形,利用勾股定理來解決問題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-2,$\sqrt{2}$] | B. | [-$\sqrt{2}$,$\sqrt{2}$] | C. | [-1,$\sqrt{2}$] | D. | (-∞,$\sqrt{2}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第10和11項(xiàng) | B. | 第9項(xiàng) | C. | 第8項(xiàng) | D. | 第8或9項(xiàng) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com