四棱錐P-ABCD的底面是正方形,PD⊥底面ABCD,且PD=
2
AB
,點(diǎn)E為PB的中點(diǎn),則AE與平面PDB所成的角的大小為______.
連接AC,BD,交于O,連接OE,則
∵PD⊥底面ABCD,AC?底面ABCD,
∴PD⊥AC,
∵四棱錐P-ABCD的底面是正方形,
∴AC⊥BD
∵PD∩BD=D
∴AC⊥平面PDB
∴∠AEO為AE與平面PDB所成的角,
設(shè)AB=a,則PD=
2
a,∴OE=
2
2
a

∵AO=
2
2
a
,∴AE=a,
∴sin∠AEO=
AO
AE
=
2
2

∴∠AEO=45°
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知幾何體A-BCED的三視圖如圖所示,其中俯視圖和側(cè)視圖都是腰長為4的等腰直角三角形,正視圖為直角梯形.
(1)求此幾何體的體積V的大小;
(2)求異面直線DE與AB所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

正方體ABCD-A1B1C1D1的棱長為a.
(1)求A1B與B1C所成的角
(2)求點(diǎn)D到B1C的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖是無蓋正方體紙盒的展開圖,在原正方體中直線AB,CD所成角的大小為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在側(cè)棱垂直底面的四棱柱ABCD-A1B1C1D1中,ADBC,AD⊥AB,AB=
2
.AD=2,BC=4,AA1=2,E是DD1的中點(diǎn),F(xiàn)是平面B1C1E與直線AA1的交點(diǎn).
(1)證明:
(i)EFA1D1;
(ii)BA1⊥平面B1C1EF;
(2)求BC1與平面B1C1EF所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知四棱柱ABCD-A1B1C1D1,側(cè)棱與底面垂直,底面ABCD是菱形且∠BAD=60°,側(cè)棱與底面邊長均為2,則面AB1C與底面A1B1C1D1,ABCD所成角的正弦值為( 。
A.
1
2
B.2C.
5
5
D.
2
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

下圖是幾何體ABC-A1B1C1的三視圖和直觀圖.M是CC1上的動(dòng)點(diǎn),N,E分別是AM,A1B1的中點(diǎn).
(1)求證:NE平面BB1C1C;
(2)當(dāng)M在CC1的什么位置時(shí),B1M與平面AA1C1C所成的角是30°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知正方體ABCD-A1B1C1D1,則直線AB與平面BDA1所成角的正弦值等于______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在正方體ABCD-A′B′C′D′中,直線BC′與平面A′BD所成的角的余弦值等于( 。
A.
2
4
B.
3
3
C.
2
3
D.
3
2

查看答案和解析>>

同步練習(xí)冊(cè)答案