函數(shù)f(x)=的不連續(xù)點(diǎn)是(    )

A.x=2                                                  B.x=-2

C.x=2和x=-2                                       D.x=4和x=-4

解析:因x=±2時(shí)函數(shù)無(wú)意義.故選C

答案:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當(dāng)a∈[-2,
1
4
)
時(shí),求f(x)的最大值;
(2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點(diǎn)的連線的斜率,否存在實(shí)數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x+
2a2x
+alnx.
(I)求f(x)的單調(diào)遞增區(qū)間;
(II)設(shè)a=1,g(x)=f′(x),問(wèn)是否存在實(shí)數(shù)k,使得函數(shù)g(x)(均的圖象上任意不同兩點(diǎn)連線的斜率都不小于k?若存在,求k的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知六個(gè)點(diǎn)A1(x1,1),B1(x2,-1),A2(x3,1),B2(x4,-1),A3(x5,1),B3(x6,-1)(x1<x2<x3<x4<x5<x6,x6-x1=5π)都在函數(shù)f(x)=sin(x+
π3
)的圖象C上.如果這六點(diǎn)中不同的兩點(diǎn)的連線的中點(diǎn)仍在曲線C上,則稱此兩點(diǎn)為“好點(diǎn)組”,則上述六點(diǎn)中好點(diǎn)組的個(gè)數(shù)為
11
11
.(兩點(diǎn)不計(jì)順序)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•寧德模擬)已知函數(shù)f(x)=x3+bx+c在點(diǎn)(1,f(1))處的切線方程為2x-y-2=0.
(Ⅰ)求實(shí)數(shù)b,c的值;
(Ⅱ)求函數(shù)g(x)=[f(x)-x3]ex在區(qū)間[t,t+1]的最大值;
(Ⅲ)設(shè)h(x)=f(x)+6lnx,問(wèn)是否存在實(shí)數(shù)m,使得函數(shù)h(x)的圖象上任意不同的兩點(diǎn)A(x1,h(x1)),B(x2,h(x2))連線的斜率都大于m?若存在,求出m的取值范圍;若不存在,說(shuō)明理由.(e為自然對(duì)數(shù)的底數(shù),e≈2.71828…)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=數(shù)學(xué)公式
(1)當(dāng)數(shù)學(xué)公式時(shí),求f(x)的最大值;
(2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點(diǎn)的連線的斜率,否存在實(shí)數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案