已知函數(shù)
(1)求曲線在點(diǎn)處的切線方程;
(2)若對(duì)于任意的,都有,求的取值范圍.
(1);(2).

試題分析:(1)先對(duì)原函數(shù)進(jìn)行求導(dǎo)得,則在點(diǎn)處的切線方程的斜率,過(guò)點(diǎn),所以切線方程為;(2)利用求導(dǎo),求出的最小值,只需要即可.對(duì)求導(dǎo),列出的變化情況統(tǒng)計(jì)表,則上遞減,在上遞增,所以上的最小值是,則,解得.
試題解析:(1)                   2分
,                                      4分
∴曲線處的切線方程為
, 即.                        6分
(2)令,                                   2分
當(dāng)變化時(shí),的變化情況如下表:










極小值

 
上遞減,在上遞增                       4分
上的最小值是                      6分
,即
的取值范圍是.                                    8分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)
(1)若方程內(nèi)有兩個(gè)不等的實(shí)根,求實(shí)數(shù)m的取值范圍;(e為自然對(duì)數(shù)的底數(shù))
(2)如果函數(shù)的圖象與x軸交于兩點(diǎn)、.求證:(其中正常數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)在(0,1)上單調(diào)遞減.
(1)求a的取值范圍;
(2)令,求在[1,2]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=ax2+ln(x+1).
(1)當(dāng)a=時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),函數(shù)y=f(x)圖像上的點(diǎn)都在所表示的平面區(qū)域內(nèi),求實(shí)數(shù)a的取值范圍;
(3)求證:(其中,e是自然數(shù)對(duì)數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

函數(shù)在實(shí)數(shù)集上是單調(diào)函數(shù),則m的取值范圍是        .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù).
(1)若函數(shù)內(nèi)單調(diào)遞增,求的取值范圍;
(2)若函數(shù)處取得極小值,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若函數(shù)處取極值,則         

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知函數(shù).若存在實(shí)數(shù),使得的解集恰為,則的取值范圍是     

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù)的導(dǎo)函數(shù)的圖象如圖所示,則函數(shù)的圖象可能是(   )

A                B               C              D

查看答案和解析>>

同步練習(xí)冊(cè)答案