(12分)已知函數(shù)
(1)若,求函數(shù)在點(0,)處的切線方程;
(2)是否存在實數(shù),使得的極大值為3.若存在,求出值;若不存在,說明理由。

(1);(2)。

解析試題分析:由題意知:
…………………………………………………2分
(1)當時,,則:,…………4分
所以函數(shù)在點(0,)處的切線方程為:…………6分
(2)令: ,則:
,所以:………………………………7分
1)當時,,則函數(shù)在上單調遞增,故無極值。……………………………………………………………………………………8分
2)當








+
0
-
0
+


極大

極小

所以:,則……………………………………………………12分
考點:本題主要考查導數(shù)的幾何意義,應用導數(shù)研究函數(shù)的極值。
點評:中檔題,本題屬于導數(shù)應用中的基本問題,(2)通過研究函數(shù)的極值情況,確定得到a的方程,從而得解。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù)
(1)若函數(shù)有兩個零點,求的取值范圍;
(2)若函數(shù)在區(qū)間上各有一個零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

是定義在上的單調增函數(shù),滿足,
(1)求;
(2)若,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

,函數(shù)(其中,
(1)求函數(shù)的定義域;
(2)求函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù)定義域為,且.
設點是函數(shù)圖像上的任意一點,過點分別作直線軸的垂線,垂足分別為

(1)寫出的單調遞減區(qū)間(不必證明);(4分)
(2)問:是否為定值?若是,則求出該定值,若不是,則說明理由;(7分)
(3)設為坐標原點,求四邊形面積的最小值.(7分)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分分)已知函數(shù) .
(1)求,;
(2)由(1)中求得結果,你能發(fā)現(xiàn)有什么關系?并證明你的結論;
(3)求的值 .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(11分)已知函數(shù)f(x)=x2+2ax-3:
(1)如果f(a+1)-f(a)=9,求a的值;  (2)問a為何值時,函數(shù)的最小值是-4。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)已知函數(shù)
(Ⅰ) 若a =1,求函數(shù)的圖像在點處的切線方程;
(Ⅱ)求的單調區(qū)間;
(Ⅲ)如果當時,恒成立,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分16分)已知函數(shù)(其中為常數(shù),)為偶函數(shù).
(1) 求的值;
(2) 用定義證明函數(shù)上是單調減函數(shù);
(3) 如果,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案