直線l1:y=x+a和l2:y=x+b將單位圓C:x2+y2=1分成長度相等的四段弧,則a2+b2=
 
考點(diǎn):直線與圓的位置關(guān)系
專題:計(jì)算題,直線與圓
分析:由題意可得,圓心(0,0)到兩條直線的距離相等,且每段弧長都是圓周的
1
4
,即
|a|
2
=
|b|
2
=cos45°,由此求得a2+b2的值.
解答: 解:由題意可得,圓心(0,0)到兩條直線的距離相等,且每段弧長都是圓周的
1
4

|a|
2
=
|b|
2
=cos45°=
2
2
,∴a2+b2=2,
故答案為:2.
點(diǎn)評(píng):本題主要考查直線和圓的位置關(guān)系,點(diǎn)到直線的距離公式的應(yīng)用,得到
|a|
2
=
|b|
2
=cos45°是解題的關(guān)鍵,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)函數(shù)f(x),若任意a,b,c∈R,f(a),f(b),f(c)為一三角形的三邊長,則稱f(x)為“三角型函數(shù)”,已知函數(shù)f(x)=
2x+m
2x+2
(m>0)是“三角型函數(shù)”,則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=
3
sin2x
,
1
,
n
=
1
,
3+cos2x
,設(shè)函數(shù)f(x)=
m
n

(Ⅰ)求f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)在△ABC中,a、b、c分別是角A、B、C的對(duì)邊,若2
AC
BC
=
2
ab,c=2
2
,f(A)=4,求b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法正確的有
 

①函數(shù)y=log
1
2
(x2-2x-3)
的單調(diào)增區(qū)間是(-∞,1);
②若集合A={y|y=x-1},B={y|y=x2-1},則A∩B={(0,-1),(1,0)};
③若函數(shù)f(x)在(-∞,0),[0,+∞)都是單調(diào)增函數(shù),則f(x)在(-∞,+∞)上也是增函數(shù);
④函數(shù)y=
1-x2
|x+1|+|x-2|
是偶函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某幾何體的三視圖如下,根據(jù)圖中標(biāo)出的尺寸(單位:cm),可得這個(gè)幾何體的體積是( 。
A、
1
2
 cm3
B、
1
3
 cm3
C、
1
6
 cm3
D、
1
12
 cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下表是某單位在2013年1-5月份用水量(單位:百噸)的一組數(shù)據(jù):
月份x12345
用水量y4.5432.51.8
(Ⅰ)若由線性回歸方程得到的預(yù)測(cè)數(shù)據(jù)與實(shí)際檢驗(yàn)數(shù)據(jù)的誤差不超過0.05,視為“預(yù)測(cè)可靠”,通過公式得
?
b
=-0.7
,那么由該單位前4個(gè)月的數(shù)據(jù)中所得到的線性回歸方程預(yù)測(cè)5月份的用水量是否可靠?說明理由;
(Ⅱ)從這5個(gè)月中任取2個(gè)月的用水量,求所取2個(gè)月的用水量之和小于7(單位:百噸)的概率.
參考公式:回歸直線方程是:
?
a
=
.
y
-
?
b
.
x
,
?
y
=
?
b
x+
?
a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y滿足的條件
x-y≤0
x+y-1≥0
x-2y+2≥0
若z=x+3y+m的最小值為4,則m=(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若不等式組
x≥0
y≥0
y+2x≤4
y+x≤s
表示的平面區(qū)域是一個(gè)三角形,則s的取值范圍是( 。
A、0<s≤2或s≥4
B、0<s≤2
C、2≤s≤4
D、s≥4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知冪函數(shù)y=f(x)的圖象經(jīng)過點(diǎn)(2,
2
2
),則f(4)的值為( 。
A、16
B、2
C、
1
2
D、
1
16

查看答案和解析>>

同步練習(xí)冊(cè)答案