已知點(diǎn)F1、F2分別是橢圓的左、右焦點(diǎn),過(guò)F1且垂直于x軸的直線(xiàn)與橢圓交于A、B兩點(diǎn),若△ABF2為正三角形,則該橢圓的離心率e是( )
A.
B.
C.
D.
【答案】分析:先求出 AF1 的長(zhǎng),直角三角形AF1;;F2 中,由邊角關(guān)系得 tan60°==,建立關(guān)于離心率的方程,
解方程求出離心率的值.
解答:解:把x=-c代入橢圓的方程可得y=,∴AF1 =,由tan30°=====,
求得 3e2+2e-3=0,解得 (舍去),或,
故選D.
點(diǎn)評(píng):本題考查橢圓的簡(jiǎn)單性質(zhì),直角三角形中的邊角關(guān)系,解方程求離心率的大小,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•聊城一模)已知點(diǎn)F1,F(xiàn)2分別為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦點(diǎn),P是橢圓C上的一點(diǎn),且|F1F2|=2,∠F1PF2=
π
3
,△F1PF2
的面積為
3
3

(Ⅰ)求橢圓C的方程;
(Ⅱ)點(diǎn)M的坐標(biāo)為(
5
4
,0)
,過(guò)點(diǎn)F2且斜率為k的直線(xiàn)l與橢圓C相交于A,B兩點(diǎn),對(duì)于任意的k∈R,
MA
MB
是否為定值?若是求出這個(gè)定值;若不是說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•青州市模擬)已知點(diǎn)F1,F(xiàn)2分別為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點(diǎn),點(diǎn)P為橢圓上任意一點(diǎn),P到焦點(diǎn)F2的距離的最大值為
2
+1
,且△PF1F2的最大面積為1.
( I)求橢圓C的方程.
( II)點(diǎn)M的坐標(biāo)為(
5
4
,0)
,過(guò)點(diǎn)F2且斜率為k的直線(xiàn)L與橢圓C相交于A,B兩點(diǎn).對(duì)于任意的k∈R,
MA
MB
是否為定值?若是求出這個(gè)定值;若不是說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)F1,F(xiàn)2分別為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點(diǎn),點(diǎn)P為橢圓上任意一點(diǎn),P到焦點(diǎn)F2(1,0)的距離的最大值為
2
+1.
(1)求橢圓C的方程.
(2)點(diǎn)M的坐標(biāo)為(
5
4
,0),過(guò)點(diǎn)F2且斜率為k的直線(xiàn)l與橢圓C相交于A,B兩點(diǎn).對(duì)于任意的k∈R,
MA
MB
是否為定值?若是求出這個(gè)定值;若不是說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:山東省期中題 題型:解答題

已知點(diǎn)F1,F(xiàn)2分別為橢圓C:(a>b>0)的左、右焦點(diǎn),點(diǎn)P為橢圓上任意一點(diǎn),P到焦點(diǎn)F2的距離的最大值為+1,且△PF1F2的最大面積為1。
(1)求橢圓C的方程。
(2)點(diǎn)M的坐標(biāo)為,過(guò)點(diǎn)F2且斜率為k的直線(xiàn)L與橢圓C相交于A,B兩點(diǎn)。對(duì)于任意的k∈R,是否為定值?若是求出這個(gè)定值;若不是說(shuō)明理由。 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年山東省青島十九中高三(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知點(diǎn)F1,F(xiàn)2分別為橢圓C:的左右焦點(diǎn),P是橢圓C上的一點(diǎn),且的面積為
(Ⅰ)求橢圓C的方程;
(Ⅱ)點(diǎn)M的坐標(biāo)為,過(guò)點(diǎn)F2且斜率為k的直線(xiàn)l與橢圓C相交于A,B兩點(diǎn),對(duì)于任意的是否為定值?若是求出這個(gè)定值;若不是說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案