已知偶函數(shù)f(x)在區(qū)間[0,+∞)上滿足f′(x)>0,則滿足f(x2-2x)<f(x)的X的取值范 圍是( )
A.(1,3)
B.(-∞,-3)∪(3,+∞)
C.(-3,3)
D.(-3,1)
【答案】分析:根據(jù)導(dǎo)數(shù)符號(hào)可判斷函數(shù)的單調(diào)性,再利用條件偶函數(shù)可把f(x2-2x)<f(x)轉(zhuǎn)化為x2-2x與x間不等式,從而得到x的取值范圍.
解答:解:因?yàn)楹瘮?shù)f(x)為偶函數(shù),所以f(x2-2x)<f(x)等價(jià)于f(|x2-2x|)<f(|x|).
又函數(shù)f(x)在區(qū)間[0,+∞)上滿足f′(x)>0,所以函數(shù)f(x)在區(qū)間[0,+∞)上單調(diào)遞增.
所以|x2-2x|<|x|,兩邊平方并化簡(jiǎn)得x2(x-1)(x-3)<0,解得1<x<3.
故選A.
點(diǎn)評(píng):本題為函數(shù)奇偶性、單調(diào)性及導(dǎo)數(shù)的綜合題,考查了相關(guān)的基礎(chǔ)知識(shí)及分析問題、解決問題的能力.解決本題的關(guān)鍵是去掉符號(hào)“f”,轉(zhuǎn)化為自變量間的不等關(guān)系.