【題目】經(jīng)銷商小王對其所經(jīng)營的某一型號二手汽車的使用年數(shù)(0<≤10)與銷售價格(單位:萬元/輛)進行整理,得到如下的對應數(shù)據(jù):
使用年數(shù) | 2 | 4 | 6 | 8 | 10 |
售價 | 16 | 13 | 9.5 | 7 | 4.5 |
(Ⅰ)試求關于的回歸直線方程;
(附:回歸方程中,
(Ⅱ)已知每輛該型號汽車的收購價格為萬元,根據(jù)(Ⅰ)中所求的回歸方程,
預測為何值時,小王銷售一輛該型號汽車所獲得的利潤最大.
科目:高中數(shù)學 來源: 題型:
【題目】已知正方形的邊長為,將沿對角線折起,使平面平面,得到如圖所示的三棱錐,若為邊的中點,分別為上的動點(不包括端點),且,設,則三棱錐的體積取得最大值時,三棱錐的內(nèi)切球的半徑為_______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,拋擲一藍、一黃兩枚質(zhì)地均勻的正四面體骰子,分別觀察底面上的數(shù)字.
(1)用表格表示試驗的所有可能結果;
(2)列舉下列事件包含的樣本點:A=“兩個數(shù)字相同”,B=“兩個數(shù)字之和等于5”,C=“藍色骰子的數(shù)字為2”.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
若是函數(shù)的極值點,求曲線在點處的切線方程;
若函數(shù)在區(qū)間上為單調(diào)遞減函數(shù),求實數(shù)a的取值范圍;
設m,n為正實數(shù),且,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】判斷下列說法是否正確,若錯誤,請舉出反例
(1)互斥的事件一定是對立事件,對立事件不一定是互斥事件;
(2)互斥的事件不一定是對立事件,對立事件一定是互斥事件;
(3)事件與事件B中至少有一個發(fā)生的概率一定比與B中恰有一個發(fā)生的概率大;
(4)事件與事件B同時發(fā)生的概率一定比與B中恰有一個發(fā)生的概率小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若,求函數(shù)的值域;
(2)若函數(shù)的定義域、值域都為,且在上單調(diào),求實數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某顏料公司生產(chǎn)A,B兩種產(chǎn)品,其中生產(chǎn)每噸A產(chǎn)品,需要甲染料1噸,乙染料4噸,丙染料2噸,生產(chǎn)每噸B產(chǎn)品,需要甲染料1噸,乙染料0噸,丙染料5噸,且該公司一天之內(nèi)甲、乙、丙三種染料的用量分別不超過50噸,160噸和200噸,如果A產(chǎn)品的利潤為300元/噸,B產(chǎn)品的利潤為200元/噸,設公司計劃一天內(nèi)安排生產(chǎn)A產(chǎn)品x噸,B產(chǎn)品y噸.
(I)用x,y列出滿足條件的數(shù)學關系式,并在下面的坐標系中畫出相應的平面區(qū)域;
(II)該公司每天需生產(chǎn)A,B產(chǎn)品各多少噸可獲得最大利潤,最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)記,是的導函數(shù),如果是函數(shù)的兩個零點,且滿足,證明:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com