已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)為,點(diǎn)是點(diǎn)關(guān)于軸的對稱點(diǎn),過點(diǎn)的直線交拋物線于兩點(diǎn)。
(Ⅰ)試問在軸上是否存在不同于點(diǎn)的一點(diǎn),使得與軸所在的直線所成的銳角相等,若存在,求出定點(diǎn)的坐標(biāo),若不存在說明理由。
(Ⅱ)若的面積為,求向量的夾角;
(Ⅰ)存在T(1,0);(Ⅱ)向量的夾角.
解析試題分析:(Ⅰ)試問在軸上是否存在不同于點(diǎn)的一點(diǎn),使得與軸所在的直線所成的銳角相等,若存在,求出定點(diǎn)的坐標(biāo),若不存在說明理由,這是一個探索性命題,解這一類問題,一般都假設(shè)其存在,若能求出的坐標(biāo),就存在這樣的點(diǎn),若不能求出的坐標(biāo),就不存在這樣的點(diǎn),本題假設(shè)存在滿足題意,與軸所在的直線所成的銳角相等,則它們的斜率互為相反數(shù),結(jié)合直線與拋物線的位置關(guān)系,采用設(shè)而不求的方法即可解決;(Ⅱ)求向量的夾角,可根據(jù)夾角公式,分別求出,與即可.
試題解析:(Ⅰ)由題意知:拋物線方程為:且
設(shè) 直線代入得
,
假設(shè)存在滿足題意,則
存在T(1,0)
(Ⅱ),
(13分)
考點(diǎn):直線與拋物線位置關(guān)系,向量夾角.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C:的離心率為,長軸長為.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線交橢圓C于A、B兩點(diǎn),試問:在y軸正半軸上是否存在一個定點(diǎn)M滿足,若存在,求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓及定點(diǎn),點(diǎn)是圓上的動點(diǎn),點(diǎn)在上,且滿足,點(diǎn)的軌跡為曲線。
(1)求曲線的方程;
(2)若點(diǎn)關(guān)于直線的對稱點(diǎn)在曲線上,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的方程為,雙曲線的左、右焦點(diǎn)分別為的左、右頂點(diǎn),而的左、右頂點(diǎn)分別是的左、右焦點(diǎn)。
(1)求雙曲線的方程;
(2)若直線與橢圓及雙曲線都恒有兩個不同的交點(diǎn),且L與的兩個焦點(diǎn)A和B滿足(其中O為原點(diǎn)),求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知兩點(diǎn)及,點(diǎn)在以、為焦點(diǎn)的橢圓上,且、、構(gòu)成等差數(shù)列.
(Ⅰ)求橢圓的方程;
(Ⅱ)如圖,動直線與橢圓有且僅有一個公共點(diǎn),點(diǎn)是直線上的兩點(diǎn),且,. 求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的中心在原點(diǎn),離心率,右焦點(diǎn)為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)橢圓的上頂點(diǎn)為,在橢圓上是否存在點(diǎn),使得向量與共線?若存在,求直線的方程;若不存在,簡要說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知、分別是橢圓的左、右焦點(diǎn),右焦點(diǎn)到上頂點(diǎn)的距離為2,若.
(Ⅰ)求此橢圓的方程;
(Ⅱ)點(diǎn)是橢圓的右頂點(diǎn),直線與橢圓交于、兩點(diǎn)(在第一象限內(nèi)),又、是此橢圓上兩點(diǎn),并且滿足,求證:向量與共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓過點(diǎn),且離心率。
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線與橢圓相交于,兩點(diǎn)(不是左右頂點(diǎn)),橢圓的右頂點(diǎn)為D,且滿足,試判斷直線是否過定點(diǎn),若過定點(diǎn),求出該定點(diǎn)的坐標(biāo);若不過定點(diǎn),請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知三點(diǎn)P(5,2)、F1(-6,0)、F2(6,0)。
(1)求以F1、F2為焦點(diǎn)且過點(diǎn)P的橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)P、F1、F2關(guān)于直線y=x的對稱點(diǎn)分別為,求以為焦點(diǎn)且過點(diǎn)的雙曲線的標(biāo)準(zhǔn)方程。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com