右圖為一組合體,其底面為正方形,平面,,且
(Ⅰ)求證:平面;
(Ⅱ)求四棱錐的體積;
(Ⅲ)求該組合體的表面積.
(1)證明過程詳見解析;(2)2;(3).
【解析】
試題分析:本題主要考查線線垂直、平行的判定、線面垂直的判定、幾何體的體積和表面積的計算,考查空間想象能力、推理論證能力和運算能力.第一問,利用線面平行的判定得出平面,平面,所以可得到平面平面,所以利用面面平行的性質(zhì)得證結(jié)論;第二問,利用線面垂直得到線線垂直,又因為,所以得到線面垂直,所以是所求錐體的高,利用梯形面積公式求底面的面積,再利用體積公式求體積;第三問,利用已知的邊的關(guān)系和長度,可以求出組合體中每一條邊的長度,從而求出每一個面的面積,最后求和加在一起即可.
試題解析:(Ⅰ)∵,平面,平面,
∴平面,
同理可證:平面,
∵平面,平面,且,
∴平面平面,
又∵平面,∴平面,
(Ⅱ)∵平面,平面,
∴,
∵,
∴平面,
∵,
∴四棱錐的體積,
(Ⅲ)∵,,
∴,
又∵,,,,,
∴組合體的表面積為.
考點:1.線面平行的判定;2.面面平行的判定;3.梯形面積公式;4.錐體體積公式.
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分14分)
右圖為一簡單組合體,其底面ABCD為正方形,平面,
,且=2 .
(1)答題卡指定的方框內(nèi)已給出了該幾何體的俯視圖,請在方框
內(nèi)畫出該幾何體的正(主)視圖和側(cè)(左)視圖;
(2)求四棱錐B-CEPD的體積;
(3)求證:平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年寧夏高三第六次月考文科數(shù)學(xué)試卷 題型:解答題
右圖為一組合體,其底面為正方形,平面,,且
(Ⅰ)求證:平面;
(Ⅱ)求四棱錐的體積;
(Ⅲ)求該組合體的表面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆福建省四地六校高二第一次聯(lián)考理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)
右圖為一簡單組合體,其底面為正方形,平面,//,且=。
(1)求證://平面;
(2)若為線段的中點,
求證:平面;
(3)若,求平面與平面
所成的二面角的大小。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:寧夏銀川一中2011-2012學(xué)年高三第六次月考試題(數(shù)學(xué)文) 題型:解答題
右圖為一組合體,其底面為正方形,平面,,且
(Ⅰ)求證:平面;
(Ⅱ)求四棱錐的體積;
(Ⅲ)求該組合體的表面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com