(本小題滿分12分)已知為坐標(biāo)原點(diǎn),向量,,點(diǎn)是直線上一點(diǎn),且;
(1)設(shè)函數(shù),討論的單調(diào)性,并求其值域;
(2)若點(diǎn)、共線,求的值。

(1)上單調(diào)遞減,在上單調(diào)遞增,值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/49/7/lgwcl1.png" style="vertical-align:middle;" />。(2)。

解析試題分析:(1) ,,所以.2分
所以上單調(diào)遞減,在上單調(diào)遞增……………… ………..4分
,得到的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/49/7/lgwcl1.png" style="vertical-align:middle;" />………………………… ………..6分
(2),得到…..8分
所以,,又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/45/2/e5gnj1.png" style="vertical-align:middle;" />,,三點(diǎn)共線,
所以得到,所以………………………… ………..10分
所以,………………   …… ………..12分
考點(diǎn):平面向量的數(shù)量積;三角函數(shù)的單調(diào)性及值域;向量共線的條件;向量的模的概念。
點(diǎn)評(píng):本題以向量的方式來(lái)給出題設(shè)條件,來(lái)考查三角的有關(guān)知識(shí),較為綜合。同時(shí)本題對(duì)答題者公式掌握的熟練程度及知識(shí)點(diǎn)的靈活應(yīng)用要求較高,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),其圖象過(guò)點(diǎn)
(Ⅰ)求的值;
(Ⅱ)將函數(shù)的圖象上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的,縱坐標(biāo)不變,得到函數(shù)的圖象,求函數(shù)上的最大值和最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分12分)
已知函數(shù),
(1)用五點(diǎn)法畫出它在一個(gè)周期內(nèi)的閉區(qū)間上的圖象;

(2)求單調(diào)增減區(qū)間。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù).
(1). 求函數(shù)f(x)的最大值和最小正周期.
(2). 設(shè)A,B,C為ABC的三個(gè)內(nèi)角,若cosB=,,求sinA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

函數(shù)的最大值2,其圖象相鄰兩條對(duì)稱軸之間的距離為
(1)求的解析式;
(2)求函數(shù)的單調(diào)增區(qū)間;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分) 已知函數(shù)
(Ⅰ)求的最小正周期;
(Ⅱ)求在區(qū)間上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分14分) 本題共有2個(gè)小題,第1小題滿分6分,第2小題滿分8分.
已知,,滿足
(1)將表示為的函數(shù),并求的最小正周期;
(2)已知分別為的三個(gè)內(nèi)角對(duì)應(yīng)的邊長(zhǎng),若對(duì)所有恒成立,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
已知函數(shù)
(I)求函數(shù)f(x)的最小正周期;
(II)求函數(shù)f(x)在區(qū)間上的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案