三位老師和三名學生排成一排照相,學生甲必須排在三位老師的左邊,共有    種排法.
【答案】分析:若甲在最左邊,則有 種方法;若甲在左邊第二位,則有 種方法;若甲在左邊第三位,則有 種方法,相加即得所求.
解答:解:若甲在最左邊,則有=120種方法;若甲在左邊第二位,則有=48種方法;
若甲在左邊第三位,則有  =12種方法.
綜上可得,學生甲必須排在三位老師的左邊,共有120+48+12=180種,
故答案為180.
點評:本題主要考查排列與組合及兩個基本原理,排列數(shù)公式公式的應用,體現(xiàn)了分類討論的數(shù)學思想,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

三位老師和三名學生排成一排照相,學生甲必須排在三位老師的左邊,共有
180
180
種排法.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

三位老師和三名學生排成一排照相,學生甲必須排在三位老師的左邊,共有________種排法.

查看答案和解析>>

同步練習冊答案