已知函數(shù)f(x)=|ax-1|與g(x)=(a-1)x的圖象沒有交點(diǎn),那么實(shí)數(shù)a的取值范圍是( 。
A、(-∞,0]
B、(0,
1
2
)
C、[
1
2
,1)
D、[1,+∞)
考點(diǎn):函數(shù)的圖象
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:分(1)當(dāng)a≥1(2)當(dāng)0<a<1(3)當(dāng)a≤0三種情況,畫出f(x)=|ax-1|與g(x)=(a-1)x的圖象,利用圖象確定有無交點(diǎn).
解答: 解:(1)當(dāng)a≥1時(shí),f(x)=|ax-1|與g(x)=(a-1)x的圖象:

兩函數(shù)的圖象恒有交點(diǎn),
(2)當(dāng)0<a<1時(shí),f(x)=|ax-1|與g(x)=(a-1)x的圖象:

要使兩個(gè)圖象無交點(diǎn),斜率滿足:a-1≥-a,
∴a
1
2
,故
1
2
≤a<1
(3)當(dāng)a≤0時(shí),f(x)=|ax-1|與g(x)=(a-1)x的圖象:

兩函數(shù)的圖象恒有交點(diǎn),
綜上(1)(2)(3)知:
1
2
≤a<1
故選:C.
點(diǎn)評(píng):本題主要考查函數(shù)圖象的運(yùn)用,如果函數(shù)的圖象能畫出,結(jié)合圖象解題形象而直觀,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某電商在“雙十一”期間用電子支付系統(tǒng)進(jìn)行商品買賣,全部商品共有n類(n∈N*),分別編號(hào)為1,2,…,n,買家共有m名(m∈N*,m<n),分別編號(hào)為1,2,…,m.若aij=
1,第i名買家購買第j類商品
0,第i名買家不購買第j類商品
1≤i≤m,1≤j≤n,則同時(shí)購買第1類和第2類商品的人數(shù)是( 。
A、a11+a12+…+a1m+a21+a22+…+a2m
B、a11+a21+…+am1+a12+a22+…+am2
C、a11a12+a21a22+…+am1am2
D、a11a21+a12a22+…+a1ma2m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中真命題的個(gè)數(shù)有( 。
(1)集合{小于1的正有理數(shù)}是一個(gè)有限集;
(2)集合{y|y=x2-1}與集合{(x,y)|y=x2-1}是同一個(gè)集合;
(3)1,
3
2
,
6
4
,|-
1
2
|,0.5,這些數(shù)組成的集合有5個(gè)元素;
(4)集合{(x,y)|xy≤0,x,y∈R}是指第二和第四象限內(nèi)的點(diǎn)集.
A、0個(gè)B、1個(gè)C、2個(gè)D、3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)滿足f(1)=l,且對(duì)一切x∈R都有f′(x)<4,則不等式f(x)>4x-3的解集為( 。
A、(-∞,0)
B、(0,+∞)
C、(-∞,1)
D、(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)幾何體的三視圖如圖所示,則該幾何體的體積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線
x=t+1
y=2t+3
(t為參數(shù))與圓
x=
5
cosθ+2
y=
5
sinθ
(θ為參數(shù))的位置關(guān)系為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xoy中,曲線C的參數(shù)方程為
x=1+sin2θ
y=2sinθ+2cosθ
(θ為參數(shù)).若以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線M的極坐標(biāo)方程為ρsin(θ-
π
4
)=
2
2
a(其中a為常數(shù))
(1)當(dāng)a=
9
10
時(shí),曲線M與曲線C有兩個(gè)交點(diǎn)A,B.求|AB|的值;
(2)若曲線M與曲線C只有一個(gè)公共點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={x|x≥0},P={0,1,2},則有( 。
A、M?PB、M⊆P
C、M∩P=MD、M∩P=∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=sin2x+sinx•cosx的最大值是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案