【題目】設有下列四個命題:

p1:兩兩相交且不過同一點的三條直線必在同一平面內.

p2:過空間中任意三點有且僅有一個平面.

p3:若空間兩條直線不相交,則這兩條直線平行.

p4:若直線l平面α,直線m⊥平面α,則ml.

則下述命題中所有真命題的序號是__________.

【答案】①③④

【解析】

利用兩交線直線確定一個平面可判斷命題的真假;利用三點共線可判斷命題的真假;利用異面直線可判斷命題的真假,利用線面垂直的定義可判斷命題的真假.再利用復合命題的真假可得出結論.

對于命題,可設相交,這兩條直線確定的平面為;

相交,則交點在平面內,

同理,的交點也在平面內,

所以,,即,命題為真命題;

對于命題,若三點共線,則過這三個點的平面有無數(shù)個,

命題為假命題;

對于命題,空間中兩條直線相交、平行或異面,

命題為假命題;

對于命題,若直線平面,

垂直于平面內所有直線,

直線平面直線直線,

命題為真命題.

綜上可知,,為真命題,為假命題,

為真命題,為假命題,

為真命題,為真命題.

故答案為:①③④.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示的幾何體中,四邊形是正方形,四邊形是梯形,,且,,平面平面ABC.

1)求證:平面平面;

2)若,求幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在正方體中,點E是棱的中點,點F是線段上的一個動點.有以下三個命題:

①異面直線所成的角是定值;

②三棱錐的體積是定值;

③直線與平面所成的角是定值.

其中真命題的個數(shù)是( )

A. 3 B. 2 C. 1 D. 0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù).以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為

1)當時,是什么曲線?

2)當時,求的公共點的直角坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某沙漠地區(qū)經(jīng)過治理,生態(tài)系統(tǒng)得到很大改善,野生動物數(shù)量有所增加.為調查該地區(qū)某種野生動物的數(shù)量,將其分成面積相近的200個地塊,從這些地塊中用簡單隨機抽樣的方法抽取20個作為樣區(qū),調查得到樣本數(shù)據(jù)(xi,yi)(i=1,2,,20),其中xiyi分別表示第i個樣區(qū)的植物覆蓋面積(單位:公頃)和這種野生動物的數(shù)量,并計算得,,,,.

1)求該地區(qū)這種野生動物數(shù)量的估計值(這種野生動物數(shù)量的估計值等于樣區(qū)這種野生動物數(shù)量的平均數(shù)乘以地塊數(shù));

2)求樣本(xi,yi)(i=12,20)的相關系數(shù)(精確到0.01);

3)根據(jù)現(xiàn)有統(tǒng)計資料,各地塊間植物覆蓋面積差異很大.為提高樣本的代表性以獲得該地區(qū)這種野生動物數(shù)量更準確的估計,請給出一種你認為更合理的抽樣方法,并說明理由.

附:相關系數(shù)r=,≈1.414.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地區(qū)經(jīng)過一年的新農村建設,農村的經(jīng)濟收入增加了一倍,實現(xiàn)翻番.為更好地了解該地區(qū)農村的經(jīng)濟收入變化情況,統(tǒng)計了該地區(qū)新農村建設前后農村的經(jīng)濟收入構成比例,得到如下餅圖:

則下面結論中正確的是(

A.新農村建設后,種植收入減少

B.新農村建設后,其他收入增加了

C.新農村建設后,養(yǎng)殖收入沒有增加

D.新農村建設后,養(yǎng)殖收入與第三產業(yè)收入的總和超過了經(jīng)濟收入的一半

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】孔子曰:溫故而知新.數(shù)學學科的學習也是如此.為了調查數(shù)學成績與及時復習之間的關系,某校志愿者展開了積極的調查活動:從高三年級640名學生中按系統(tǒng)抽樣抽取40名學生進行問卷調查,所得信息如下:

數(shù)學成績優(yōu)秀(人數(shù))

數(shù)學成績合格(人數(shù))

及時復習(人數(shù))

20

4

不及時復習(人數(shù))

10

6

1)張軍是640名學生中的一名,他被抽中進行問卷調查的概率是多少(用分數(shù)作答);

2)根據(jù)以上數(shù)據(jù),運用獨立性檢驗的基本思想,研究數(shù)學成績與及時復習的相關性.

參考公式:,其中為樣本容量

臨界值表:

0.25

0.15

0.10

0.05

0.025

0.010

1.323

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,,分別為的左、右頂點.

1)求的方程;

2)若點上,點在直線上,且,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在R上的連續(xù)函數(shù)fx)滿足fx)=f2x),導函數(shù)為fx).當x1時,2fx+x1fx)>0,且f(﹣1,則不等式fx)<6x12的解集為(

A.(﹣1,1)∪(1,4B.(﹣11)∪(1,3

C.,1)∪(12D.,1)∪(1,

查看答案和解析>>

同步練習冊答案