如圖,直二面角D—AB—E中,四邊形ABCD是邊長為2的正方形,AE=EB,點F在CE上,且平面ACE。

   (I)求證:平面BCE;

   (II)求二面角B—AC—E的正弦值;

   (III)求點D到平面ACE的距離。

 

 

【答案】

在直角三角形BCE中,CE=

在正方形ABCD中,BG=,在直角三角形BFG中,---9分

(III)由(II)可知,在正方形ABCD中,BG=DG,

D到平面ACE的距離等于B到平面ACE的距離,BF⊥平面ACE,

線段BF的長度就是點B到平面ACE的距離,即為D到平面ACE的距離.

故D到平面的距離為.------------------------------13分

另法:用等體積法亦可。

解法二:(Ⅰ)同解法一. ----------------------------------- 4分

(Ⅱ)以線段AB的中點為原點O,OE所在直線為z軸,AB所在直線為x軸,過O點平行于AD的直線為y軸,建立空間直角坐標系O—xyz,如圖.

面BCE,BE面BCE, ,

的中點,

設(shè)平面AEC的一個法向量為,

    令是平面AEC的一個法向量.

    又平面BAC的一個法向量為,   

    ∴二面角B—AC—E的正弦值為--------------------------------9分

【解析】略

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)直三棱柱A1B1C1-ABC的三視圖如圖所示,D、E分別為棱CC1和B1C1的中點.精英家教網(wǎng)
 (1)求點B到平面A1C1CA的距離;
(2)求二面角B-A1D-A的余弦值;
(3)在AC上是否存在一點F,使EF⊥平面A1BD,若存在確定其位置,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,五面體A-BCC1B1中,AB1=4.底面ABC 是正三角形,AB=2.四邊形BCC1B1是矩形,二面角A-BC-C1為直二面角.
(Ⅰ)若D是AC中點,求證:AB1∥平面BDC1
(Ⅱ)求該五面體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,直三棱柱ABC-A1B1C1中,AB=AC=
1
2
AA1=a
,∠BAC=90°,D為棱d=
3
5
10
的中點.
(I)證明:A1D⊥平面ADC;
(II)求異面直線A1C與C1D所成角的大;
(III)求平面A1CD與平面ABC所成二面角的大。▋H考慮銳角情況).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖:五面體A-BCC1B1中,AB1=4,△ABC 是正三角形,AB=2,四邊形  BCC1B1是矩形,二面角A-BC-C1為直二面角,D為AC的中點.
(1)求證:AB1∥平面BDC1;
(2)求二面角C-BC1-D的大;
(3)若A、B、C、C1為某一個球面上的四點,求該球的半徑r.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,直四棱柱A1B1C1D1-ABCD的高為3,底面是邊長為4,且∠DAB=60°的菱形,O是AC與BD的交點,O1是A1C1與B1D1的交點.
(I) 求二面角O1-BC-D的大;
(II) 求點A到平面O1BC的距離.

查看答案和解析>>

同步練習冊答案