【題目】選修4—4:坐標(biāo)系與參數(shù)方程
已知平面直角坐標(biāo)系,以為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,點(diǎn)的極坐標(biāo)為,曲線的參數(shù)方程為(為參數(shù)).
(1)寫出點(diǎn)的直角坐標(biāo)及曲線的直角坐標(biāo)方程;
(2)若為曲線上的動點(diǎn),求中點(diǎn)到直線的距離的最小值.
【答案】(1)的直角坐標(biāo),的直角坐標(biāo)方程為;(2).
【解析】
試題分析:(1)由可得點(diǎn)的直角坐標(biāo),根據(jù)同角三角函數(shù)的平方關(guān)系消去參數(shù),即得得到曲線的直角坐標(biāo)方程;(2)用坐標(biāo)表示數(shù)的坐標(biāo),由點(diǎn)到直線的距離公式和正弦函數(shù)的性質(zhì)即可求得距離的最小值.
試題解析:(1) 點(diǎn)的直角坐標(biāo),由,得,
∴曲線的直角坐標(biāo)方程為.
(2)曲線的參數(shù)方程為(為參數(shù)),直線的普通方程為,
設(shè),則,那么點(diǎn)到直線的距離
,
∴點(diǎn)到直線的最小距離為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過拋物線的焦點(diǎn)的直線交拋物線于, 兩點(diǎn), 為坐標(biāo)原點(diǎn),若,則△的面積為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)為奇函數(shù)
(1)比較的大小,并說明理由.(提示: )
(2)若,且對恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若曲線在和處的切線互相平行,求的值;
(2)求的單調(diào)區(qū)間;
(3)設(shè),若對任意,均存在,使得,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓內(nèi)有一點(diǎn)為過點(diǎn)且傾斜角為的弦.
(1)當(dāng)時,求弦的長;
(2)當(dāng)弦被平分時,圓經(jīng)過點(diǎn)且與直線相切于點(diǎn),求圓的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦距為,左、右頂點(diǎn)分別為、,是橢圓上一點(diǎn), 記直線、的斜率為、,且有.
(1)求橢圓的方程;
(2)若直線與橢圓交于、兩點(diǎn), 以、為直徑的圓經(jīng)過原點(diǎn), 且線段的垂直平分線在軸上的截距為,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,面為矩形,為的中點(diǎn),與交于點(diǎn).
(Ⅰ)證明:;
(Ⅱ)若,求四面體AA1BC的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的左、右焦點(diǎn)分別為,右頂點(diǎn)為,上頂點(diǎn)為,已知.
(1)求橢圓的離心率;
(2)設(shè)為橢圓上異于其頂點(diǎn)的一點(diǎn),以線段為直徑的圓經(jīng)過點(diǎn),經(jīng)過原點(diǎn)的直線與該圓相切,求直線的斜率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com