【題目】如圖,四棱錐P﹣ABCD中,底面ABCD是一個(gè)菱形,三角形PAD是一個(gè)等腰三角形,∠BAD=∠PAD=,點(diǎn)E在線段PC上,且PE=3EC.

(1)求證:AD⊥PB;

(2)若平面PAD⊥平面ABCD,求二面角E﹣AB﹣P的余弦值.

【答案】(1)見(jiàn)解析;(2)

【解析】

1)取中點(diǎn),連接,根據(jù)等邊三角形的性質(zhì)證得平面,由此證得.(2)以分別為軸建立空間直角坐標(biāo)系,通過(guò)計(jì)算平面和平面的法向量,計(jì)算出二面角的余弦值.

(1)取中點(diǎn),連接,

由條件知均為等邊三角形,

因此,

由線面垂直定理可證,

即證

(2)由(1)知,

從而

建立空間直角坐標(biāo)系,如圖所示:

設(shè),則,,,

,

,

設(shè)面的法向量為

可得;

設(shè)面的法向量為

可得

由圖知二面角為銳角,

故二面角的余弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)已經(jīng)成為全球最大的電商市場(chǎng),但是實(shí)體店仍然是消費(fèi)者接觸商品和品牌的重要渠道.某機(jī)構(gòu)隨機(jī)抽取了年齡介于10歲到60歲的消費(fèi)者200人,對(duì)他們的主要購(gòu)物方式進(jìn)行問(wèn)卷調(diào)查.現(xiàn)對(duì)調(diào)查對(duì)象的年齡分布及主要購(gòu)物方式進(jìn)行統(tǒng)計(jì),得到如下圖表:

主要購(gòu)物方式

年齡階段

網(wǎng)絡(luò)平臺(tái)購(gòu)物

實(shí)體店購(gòu)物

總計(jì)

40歲以下

75

40歲或40歲以上

55

總計(jì)

(1)根據(jù)已知條件完成上述列聯(lián)表,并據(jù)此資料,能否在犯錯(cuò)誤的概率不超過(guò)的前提下,認(rèn)為消費(fèi)者主要的購(gòu)物方式與年齡有關(guān)?

(2)用分層抽樣的方法從通過(guò)網(wǎng)絡(luò)平臺(tái)購(gòu)物的消費(fèi)者中隨機(jī)抽取8人,然后再?gòu)倪@8名消費(fèi)者中抽取5名進(jìn)行答謝.設(shè)抽到的消費(fèi)者中40歲以下的人數(shù)為,求的分布列和數(shù)學(xué)期望.

參考公式:,其中.

臨界值表:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)是定義在R上的奇函數(shù),

(1)求實(shí)數(shù)的值;

(2)如果對(duì)任意,不等式恒成立,求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)生產(chǎn)一種機(jī)器的固定成本(即固定投入)為0.5萬(wàn)元,但每生產(chǎn)100臺(tái)時(shí),又需可變成本(即另增加投入)0.25萬(wàn)元.市場(chǎng)對(duì)此商品的年需求量為500臺(tái),銷(xiāo)售的收入(單位:萬(wàn)元)函數(shù)為,其中是產(chǎn)品生產(chǎn)的數(shù)量(單位:百臺(tái)).

(1)求利潤(rùn)關(guān)于產(chǎn)量的函數(shù).

(2)年產(chǎn)量是多少時(shí),企業(yè)所得的利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線的極坐標(biāo)方程是,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線的參數(shù)方程是 (為參數(shù)).

(1)將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程;

(2)若直線與曲線相交于兩點(diǎn),且,求直線的傾斜角的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2017527日當(dāng)今世界圍棋排名第一的柯潔在與的人機(jī)大戰(zhàn)中中盤(pán)棄子認(rèn)輸,至此柯潔與的三場(chǎng)比賽全部結(jié)束,柯潔三戰(zhàn)全負(fù),這次人機(jī)大戰(zhàn)再次引發(fā)全民對(duì)圍棋的關(guān)注,某學(xué)校社團(tuán)為調(diào)查學(xué)生學(xué)習(xí)圍棋的情況,隨機(jī)抽取了100名學(xué)生進(jìn)行調(diào)查,根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均學(xué)習(xí)圍棋時(shí)間的頻率分布直方圖(如圖所示),將日均學(xué)習(xí)圍棋時(shí)間不低于40分鐘的學(xué)生稱(chēng)為“圍棋迷”.

(1)請(qǐng)根據(jù)已知條件完成下面列聯(lián)表,并據(jù)此資料你是否有95%的把握認(rèn)為“圍棋迷”與性別有關(guān)?

非圍棋迷

圍棋迷

合計(jì)

10

55

合計(jì)

(2)為了進(jìn)一步了解“圍棋迷”的圍棋水平,從“圍棋迷”中按性別分層抽樣抽取5名學(xué)生組隊(duì)參加校際交流賽,首輪該校需派兩名學(xué)生出賽,若從5名學(xué)生中隨機(jī)抽取2人出賽,求2人恰好一男一女的概率.

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】湖南省某自來(lái)水公司每個(gè)月(記為一個(gè)收費(fèi)周期)對(duì)用戶(hù)收一次水費(fèi),收費(fèi)標(biāo)準(zhǔn)如下:當(dāng)每戶(hù)用水量不超過(guò)30噸時(shí),按每噸2元收取;當(dāng)該用戶(hù)用水量超過(guò)30噸但不超過(guò)50噸時(shí),超出部分按每噸3元收;當(dāng)該用戶(hù)用水量超過(guò)50噸時(shí),超出部分按每噸4元收取。

(1)記某用戶(hù)在一個(gè)收費(fèi)周期的用水量為噸,所繳水費(fèi)為元,寫(xiě)出關(guān)于的函數(shù)解析式;

(2)在某一個(gè)收費(fèi)周期內(nèi),若甲、乙兩用戶(hù)所繳水費(fèi)的和為214元,且甲、乙兩用戶(hù)用水量之比為3:2,試求出甲、乙兩用戶(hù)在該收費(fèi)周期內(nèi)各自的用水量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),其中,若存在唯一的整數(shù)使得,則的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,其左、右焦點(diǎn)分別為,點(diǎn)是坐標(biāo)平面內(nèi)一點(diǎn),且, 為坐標(biāo)原點(diǎn)).

(1)求橢圓的方程;

(2)過(guò)點(diǎn)且斜率為的動(dòng)直線交橢圓于兩點(diǎn),在軸上是否存在定點(diǎn),使以為直徑的圓恒過(guò)該點(diǎn)?若存在,求出點(diǎn)的坐標(biāo),若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案