已知橢圓的離心率為,焦點(diǎn)是,則橢圓方程為      ( ■ )
A.B.C.D.
A

分析:先根據(jù)焦點(diǎn)坐標(biāo)求得c,再根據(jù)離心率求得a,最后根據(jù)b= 求得b,橢圓的方程可得.
解答:解:已知橢圓的離心率為,焦點(diǎn)是(-3,0),(3,0),則c=3,a=6,b=36-9=27,
橢圓的方程為
故選A.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分14分)
設(shè)橢圓的左右焦點(diǎn)分別為、,是橢圓上的一點(diǎn),,坐標(biāo)原點(diǎn)到直線(xiàn)的距離為
(1)求橢圓的方程;
(2)設(shè)是橢圓上的一點(diǎn),過(guò)點(diǎn)的直線(xiàn)軸于點(diǎn),交軸于點(diǎn),若,求直線(xiàn)的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)橢圓軸正方向交點(diǎn)為A,和軸正方向的交點(diǎn)為B,P為第一象限內(nèi)橢圓上的點(diǎn),使四邊形OAPB面積最大(O為原點(diǎn)),那么四邊形OAPB面積最大值為( 。
A.  B.  C.  D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(15 分)已知橢圓的右焦點(diǎn)F 與拋物線(xiàn)y2 =" 4x" 的焦點(diǎn)重合,短軸長(zhǎng)為2.橢圓的右準(zhǔn)線(xiàn)l與x軸交于E,過(guò)右焦點(diǎn)F 的直線(xiàn)與橢圓相交于A、B 兩點(diǎn),點(diǎn)C 在右準(zhǔn)線(xiàn)l上,BC//x 軸.
(1)求橢圓的標(biāo)準(zhǔn)方程,并指出其離心率;
(2)求證:線(xiàn)段EF被直線(xiàn)AC 平分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓,P為該橢圓上一點(diǎn).
(1)若P到左焦點(diǎn)的距離為3,求到右準(zhǔn)線(xiàn)的距離;
(2)如果F1為左焦點(diǎn),F2為右焦點(diǎn),并且,求的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)分別是橢圓)的左、右焦點(diǎn),是其右準(zhǔn)線(xiàn)上縱坐標(biāo)為為半焦距)的點(diǎn),且,則橢圓的離心率是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分13分)
已知橢圓)的右焦點(diǎn)為,離心率為.
(Ⅰ)若,求橢圓的方程;
(Ⅱ)設(shè)直線(xiàn)與橢圓相交于兩點(diǎn),分別為線(xiàn)段的中點(diǎn). 若坐標(biāo)原點(diǎn)在以為直徑的圓上,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知水平地面上有一籃球,在斜平行光線(xiàn)的照射下,其陰影為一橢圓(如上圖),在平面直角坐標(biāo)系中,O為原點(diǎn),設(shè)橢圓的方程為),籃球與地面的接觸點(diǎn)為H,則|OH|=           .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

橢圓G:的兩個(gè)焦點(diǎn)為是橢圓上一點(diǎn),且滿(mǎn)
(1)求離心率的取值范圍;
(2)當(dāng)離心率取得最小值時(shí),點(diǎn)到橢圓上點(diǎn)的最遠(yuǎn)距離為
①求此時(shí)橢圓G的方程;
②設(shè)斜率為的直線(xiàn)與橢圓G相交于不同兩點(diǎn)的中點(diǎn),問(wèn):

查看答案和解析>>

同步練習(xí)冊(cè)答案