分析 由a(2e-t)lnt=1⇒h(x)=(2e-t)lnt與y=$\frac{1}{a}$有交點(diǎn),求出a 的范圍即可.
解答 解:正數(shù)t滿足a(2e-t)lnt=1(e為自然對(duì)數(shù)的底數(shù))⇒$\frac{1}{a}$=(2e-t)lnt,
設(shè)h(x)=(2e-t)lnt,h′(x)=$\frac{2e}{t}-1-lnt$,
h′(x)=$\frac{2e}{t}-1-lnt$=0⇒x=e,∴x∈(0,e)時(shí)h(x)遞增,x∈(e,+∞)時(shí)h(x)遞減,$\frac{1}{a}$≤h(x)=(e)=e⇒a≥$\frac{1}{e}$或a<0.
故答案為:(-∞,0)$∪[\frac{1}{e},+∞)$
點(diǎn)評(píng) 本題考查了函數(shù)與方程的轉(zhuǎn)化思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 2 | C. | $-\frac{1}{2}$ | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | 8 | D. | 16 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com