從5名志愿者中選派4人在星期六和星期天參加公益活動(dòng),每人一天,每天兩人參加,共有
 
種方法.
考點(diǎn):排列、組合的實(shí)際應(yīng)用
專題:計(jì)算題,概率與統(tǒng)計(jì)
分析:根據(jù)題意,分3步進(jìn)行分析:①、從5名志愿者中選派4人參加活動(dòng),②、將4人分為2組,③、將2組進(jìn)行全排列,對(duì)應(yīng)星期六和星期天,由排列、組合公式可得每一步的情況數(shù)目,進(jìn)而由分步計(jì)數(shù)原理計(jì)算可得答案.
解答: 解:根據(jù)題意,分3步進(jìn)行分析:
①、從5名志愿者中選派4人參加活動(dòng),有C54=5種選法,
②、將4人分為2組,有
C
2
4
C
2
2
2
=3種分法,
③、將2組進(jìn)行全排列,對(duì)應(yīng)星期六和星期天,有A22=2種情況,
則共有5×3×2=30種方法;
故答案為30.
點(diǎn)評(píng):本題考查排列、組合的運(yùn)用,解題的關(guān)鍵是根據(jù)題意,正確進(jìn)行分類討論或分步分析.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果圓的方程為x2+y2+kx+2y+k2=0,則當(dāng)圓面積最大時(shí),圓心為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an},圓C1:x2+y2-2anx+2an+1y-1=0和圓C2:x2+y2+2x+2y-2=0.若圓C1與C2交于A、B兩點(diǎn),且AB平分圓C2的周長(zhǎng).
(Ⅰ)求證:數(shù)列{an}是等差數(shù)列;
(Ⅱ)若a1=-3,求圓C1被直線x+2y+2=0截得弦長(zhǎng)最小時(shí)圓C1的方程.
(Ⅲ)若圓C3為(Ⅱ)中求出的圓C1的同心圓,且半徑為2.設(shè)P為平面上的點(diǎn),滿足:存在過(guò)點(diǎn)P的無(wú)窮多對(duì)互相垂直的直線l1和l2,它們分別與圓C2和C3相交,且直線l1被圓C2截得的弦長(zhǎng)與直線l2被圓C3截得的弦長(zhǎng)相等,試求所有滿足條件的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若S是等差數(shù)列的奇數(shù)項(xiàng)的和,S是等差數(shù)列的偶數(shù)項(xiàng)的和,Sn是等差數(shù)列的前n項(xiàng)的和,則有如下性質(zhì):
(1)當(dāng)n為偶數(shù)時(shí),則S-S=
 
(其中d為公差);
(2)當(dāng)n為奇數(shù)時(shí),則S-S=
 
,S=
 
,S=
 
,
S
S
=
 
;
Sn
S-S
=
S+S
S-S
=
 
(其中a是等差數(shù)列的中間一項(xiàng)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,
AB
=
a
,
AC
=
b
,當(dāng)
a
、
b
滿足下列條件式,能確定△ABC的形狀嗎?
(1)
a
b
<0;
(2)
a
b
=0;
(3)
a
b
>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知p:方程x2+mx+1=0有兩個(gè)不相等的實(shí)根,q:不等式4x2+4(m-2)x+1>0無(wú)實(shí)根.若p∨q為真命題,¬q為真命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
=(1,-1),
b
=(-1,2),
p
=k
a
+
b
q
=
a
-k
b
,若
p
q
,則k=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

化簡(jiǎn):
2cos2α-1
2tan(
π
4
-α)•cos2(
π
4
-α)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若二次函數(shù)f(x)的圖象與x軸有兩個(gè)相異交點(diǎn),它的導(dǎo)函數(shù)f′(x)的圖象過(guò)二、三、四象限,則函數(shù)f(x)圖象的頂點(diǎn)在第
 
象限.

查看答案和解析>>

同步練習(xí)冊(cè)答案