拋物線y=x2上的兩點A與B的橫坐標恰好是關于x的方程x2+px+q=0(p、q∈R,p、q是常數(shù))的兩個實根,則直線AB的方程是_____________.

px+3y+q=0(p2-4q>0)


解析:

設A(x1,y1),B(x2,y2),AB的中點M(x0,y0),

由點差法得=(x1+x2)=-,

即kAB=-.

又x0==-,

y0=(x12+x22)=[(x1+x2)2-2x1x2]=(p2-2q),

∴M(-p,(p2-2q)).

∴AB的方程為y-(p2-2q)=-(x+p),即px+3y+q=0(p2-4q>0).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

正方形ABCD的兩頂點A、B在拋物線y=x2上,兩頂點C、D在直線y=x-4上,求正方形的邊長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)過x軸上動點A(a,0)引拋物線y=x2+1的兩條切線AP、AQ,P、Q為切點.
(1)若切線AP,AQ的斜率分別為k1和k2,求證:k1•k2為定值,并求出定值;
(2)求證:直線PQ恒過定點,并求出定點坐標; 
(3)當
S△APO
PQ
最小時,求
AQ
AP
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過x軸上的動點A(a,0)引拋物線y=x2+1的兩切線AP,AQ.P,Q為切點.
(I)求切線AP,AQ的方程;
(Ⅱ)求證直線PQ過定點;
(III)若a≠0,試求
S△APQ|OA|
的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設M,N為拋物線C:y=x2上的兩個動點,過M,N分別作拋物線C的切線l1,l2,與x軸分別交于A,B兩點,且l1∩l2=P,AB=1,則
(Ⅰ)求點P的軌跡方程
(Ⅱ)求證:△MNP的面積為一個定值,并求出這個定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點A、B是拋物線y=x2上的兩個不同于坐標原點O的動點,且=0.

(1)求以AB為直徑的圓的圓心的軌跡方程;

(2)過A、B分別作拋物線的切線,證明兩切線交點M的縱坐標為定值.

查看答案和解析>>

同步練習冊答案