在△ABC中,角A,B,C的對邊分別為a,b,c,且滿足(2a-c)cosB=bcosC.
(1)求角B的大小;
(2)設
m
=(cosA,cos2A),
n
=(-
12
5
 , 1),且
m
n
取最小值時,求tan(A-
π
4
)
值.
分析:(1)利用正弦定理把題設等式中的邊換成角的正弦,進而利用兩角和公式化簡整理求得cosB的值,進而求得B.
(2)根據(jù)向量的運算法則,表示出
m
n
,進而根據(jù)二次函數(shù)的性質求得當cosA為
4
5
時,
m
n
最小,進而利用同角三角函數(shù)的基本關系求得tanA的值.
解答:解:(1)∵(2a-c)cosB=bcosC,由正弦定理得:(2sinA-sinC)cosB=sinBcosC..
∴2sinA•cosB-sinC•cosB=sinBcosC
化為:2sinA•cosB=sinC•cosB+sinBcosC
∴2sinA•cosB=sin(B+C)
∵在△ABC中,sin(B+C)=sinA
∴2sinA•cosB=sinA,得:cosB=
1
2
,
B=
π
3

(2)∵
m
n
=-
12
5
cosA+cos2A
,
m
n
=-
12
5
cosA+2cos2A-1

m
n
=2(cosA-
3
5
)2-
43
25
,
得到:當cosA=
3
5
時,
m
n
取最小值
sinA=
4
5
,∴tanA=
4
3

tan(A-
π
4
)=
tanA-1
1+tanA
=
4
3
-1
1+
4
3
=
1
7
點評:本題主要考查了正弦定理和余弦定理的運用,向量的基本運算,正切的兩角和公式.考查了學生綜合分析問題和解決問題的能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,則下列關系一定不成立的是( 。
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C的對邊分別為a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C的對邊分別是a,b,c,且bsinA=
3
acosB

(1)求角B的大。
(2)若a=4,c=3,D為BC的中點,求△ABC的面積及AD的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a、b、c并且滿足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C所對邊的長分別為a,b,c,且a=
5
,b=3,sinC=2sinA
,則sinA=
 

查看答案和解析>>

同步練習冊答案