如圖,拋物線的焦點為F,準線與x軸的交點為A.點C在拋物線E上,以C為圓心,為半徑作圓,設(shè)圓C與準線交于不同的兩點M,N.
(I)若點C的縱坐標為2,求;
(II)若,求圓C的半徑.
(I)(II)
【解析】(Ⅰ)拋物線的準線的方程為,
由點的縱坐標為,得點的坐標為
所以點到準線的距離,又.
所以.
(Ⅱ)設(shè),則圓的方程為,
即.
由,得
設(shè),,則:
由,得
所以,解得,此時
所以圓心的坐標為或
從而,,即圓的半徑為
此題以圓為背景考查了解析幾何中的常用方法(如設(shè)而不求)及圓錐曲線的性質(zhì).平時只要注意計算此題問題就不會太大.
【考點定位】 本題考查拋物線的方程、圓的方程與性質(zhì)、直線與圓的位置關(guān)系等基礎(chǔ)知識,考查運算求解 能力、推理論證能力,考查函數(shù)與方程思想、數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.屬于中等難度.
科目:高中數(shù)學 來源:2010年山東省濟寧市高三第二次模擬考試數(shù)學(理) 題型:解答題
(本題滿分14分)如圖,拋物線的焦點為F,橢圓 的離心率,C1與C2在第一象限的交點為
(1)求拋物線C1及橢圓C2的方程;
(2)已知直線與橢圓C2交于不同兩點A、B,點M滿足,直線FM的斜率為k1,試證明
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆福建省高二下學期期中考試文科數(shù)學試卷(解析版) 題型:解答題
如圖,拋物線的頂點為坐標原點,焦點在軸上,準線與圓相切.
(Ⅰ)求拋物線的方程;
(Ⅱ)已知直線和拋物線交于點,命題P:“若直線過定點,則”,請判斷命題P的真假,并證明。
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年福建省泉州市高三畢業(yè)班質(zhì)量檢查文科數(shù)學試卷(解析版) 題型:解答題
(本小題滿分12分)
如圖,拋物線的頂點為坐標原點,焦點在軸上,準線與圓相切.
(Ⅰ)求拋物線的方程;
(Ⅱ)若點在拋物線上,且,求點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源:2010年山東省濟寧市高三第二次模擬考試數(shù)學(理) 題型:解答題
(本題滿分14分)如圖,拋物線的焦點為F,橢圓 的離心率,C1與C2在第一象限的交點為
(1)求拋物線C1及橢圓C2的方程;
(2)已知直線與橢圓C2交于不同兩點A、B,點M滿足,直線FM的斜率為k1,試證明
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com