如圖,拋物線的焦點為F,準線與x軸的交點為A.點C在拋物線E上,以C為圓心,為半徑作圓,設(shè)圓C與準線交于不同的兩點M,N.

(I)若點C的縱坐標為2,求

(II)若,求圓C的半徑.

 

【答案】

(I)(II)

【解析】(Ⅰ)拋物線的準線的方程為,

由點的縱坐標為,得點的坐標為

所以點到準線的距離,又

所以.

(Ⅱ)設(shè),則圓的方程為,

.

,得

設(shè),,則:

,得

所以,解得,此時

所以圓心的坐標為

從而,即圓的半徑為

此題以圓為背景考查了解析幾何中的常用方法(如設(shè)而不求)及圓錐曲線的性質(zhì).平時只要注意計算此題問題就不會太大.

【考點定位】 本題考查拋物線的方程、圓的方程與性質(zhì)、直線與圓的位置關(guān)系等基礎(chǔ)知識,考查運算求解 能力、推理論證能力,考查函數(shù)與方程思想、數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.屬于中等難度.

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2010年山東省濟寧市高三第二次模擬考試數(shù)學(理) 題型:解答題

(本題滿分14分)如圖,拋物線的焦點為F,橢圓 的離心率,C1與C2在第一象限的交點為
(1)求拋物線C1及橢圓C2的方程;
(2)已知直線與橢圓C2交于不同兩點A、B,點M滿足,直線FM的斜率為k1,試證明

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆福建省高二下學期期中考試文科數(shù)學試卷(解析版) 題型:解答題

如圖,拋物線的頂點為坐標原點,焦點軸上,準線與圓相切.

(Ⅰ)求拋物線的方程;

(Ⅱ)已知直線和拋物線交于點,命題P:“若直線過定點,則”,請判斷命題P的真假,并證明。

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年福建省泉州市高三畢業(yè)班質(zhì)量檢查文科數(shù)學試卷(解析版) 題型:解答題

(本小題滿分12分)

如圖,拋物線的頂點為坐標原點,焦點軸上,準線與圓相切.

(Ⅰ)求拋物線的方程;

(Ⅱ)若點在拋物線上,且,求點的坐標.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010年山東省濟寧市高三第二次模擬考試數(shù)學(理) 題型:解答題

(本題滿分14分)如圖,拋物線的焦點為F,橢圓 的離心率,C1與C2在第一象限的交點為

   (1)求拋物線C1及橢圓C2的方程;

   (2)已知直線與橢圓C2交于不同兩點A、B,點M滿足,直線FM的斜率為k1,試證明

 

查看答案和解析>>

同步練習冊答案